Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nat Prod ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365948

RESUMEN

The marine alkaloid erebusinone is a secondary metabolite isolated from the Antarctic sponge Isodictya erinacea. Initial biological assays have shown that erebusinone increases amphipod mortality, probably by inhibition of the biosynthesis of molting hormone (ecdysone). Herein, we report the first total synthesis of the proposed structure of erebusinone and a structural revision.

2.
J Nat Prod ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348710

RESUMEN

Two novel pyrroloiminoquinone alkaloids, 6-chlorodamirone A and 6-bromodamirone A, have been identified for the first time from the marine sponge Latrunculia sp. (order: Poecilosclerida: family Latrunculiidae), sourced from Western Australia. Alongside these new compounds, seven previously known metabolites were also isolated. Despite being obtained in submilligram quantities, the structures of these natural products were successfully elucidated using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. To confirm the structures of these newly discovered alkaloids, a semisynthetic approach was employed starting from the more abundant metabolite, damirone A, additionally, single crystal X-ray crystallography was used to validate our structural proposals. The semisynthetic studies suggest that the chlorinated alkaloids are likely formed through a nonenzymatic conjugate halide substitution reaction rather than an enzymatic process. This reactivity parallels that observed in related metabolites, such as the caulibugulones B and C. Furthermore, a biomimetic cascade reaction was attempted to synthesize the spirodienone moiety characteristic of the discorhabdin alkaloids, inspired by the nucleophilic substitution observed in the tricyclic damirone A system. Albeit unsuccessful, these findings provide valuable insight into the reactivity of halogenated pyrroloiminoquinones under various conditions.

3.
ACS Omega ; 7(23): 19080-19092, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35721899

RESUMEN

Model chemistry involving the bisannulation of 2,3-dichloro-1,4-naphthoquinone with the ester enolate derived from ethyl o-nitrophenylacetic acid, which rapid assembled the ABCD ring system of a pentacyclic pyrroloacridine, has been applied to the attempted synthesis of the marine natural product alpkinidine. The reaction of ethyl o-nitrophenylacetic acid with 6,7-dichloro-2-methylisoquinoline-1,5,8(2H)-trione, required to extend the model strategy to alpkinidine, was unfruitful, giving only complex mixtures. Efforts to direct the regiochemistry of the key Michael substitution step using 6-bromo-2-methylisoquinoline-1,5,8(2H)-trione afforded an adduct sharing the complete carbon skeleton of alpkinidine, but this could not be elaborated to the natural product.

4.
ACS Omega ; 7(23): 19093-19105, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35722017

RESUMEN

Strategies toward the total synthesis of the marine pyrroloacridine alkaloid alpkinidine have been explored, focusing on linking quinonoid CE ring-system synthons with the A ring, followed by condensation to form the B and D rings. The key Michael addition of the ester enolate derived from ethyl o-nitrophenylacetate to 2-methylisoquinoline-1,5,8(2H)-trione proceeded with the wrong regiochemistry. This issue was addressed by incorporating the D-ring nitrogen at an earlier stage, affording advanced intermediates possessing the complete carbon skeleton of alpkinidine. However, attempts to close the D and B rings were unsuccessful. The novel isoquinolinetriones reported here, and the general strategy of connecting CE- and A-ring synthons through Michael additions, may be useful in the synthesis of other pyrrolo- and pyridoacridines, in particular the anticancer lead neoamphimedine and analogues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA