Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 24(1): 45, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703029

RESUMEN

Best practices for performing freeze dryer equipment qualification are recommended, focusing on identifying methods to quantify shelf thermal uniformity (also known as "shelf surface uniformity"), equipment capability, and performance metrics of the freeze dryer essential to the pharmaceutical Quality by Design paradigm. Specific guidelines for performing shelf temperature mapping, freeze dryer equipment limit testing (the capability curve), and condenser performance metrics have been provided. Concerning shelf temperature mapping and equipment capability measurements, the importance of paying attention to the test setup and the use of appropriate testing tools are stressed. In all the guidelines provided, much attention has been paid to identifying the balance between obtaining useful process knowledge, logistical challenges associated with testing in the production environment vs that at laboratory scale, and the frequency of the testing necessary to obtain such useful information. Furthermore, merits and demerits of thermal conditions maintained on the cooled surfaces of the freeze dryer condenser have been discussed identifying the specific influence of the condenser surface temperature on the process conditions using experimental data to support the guidelines. Finally, guidelines for systematic leak rate testing criteria for a freeze dryer are presented. These specific procedural recommendations are based on calculations, measurements, and experience to provide useful process and equipment knowledge.


Asunto(s)
Liofilización , Tecnología Farmacéutica , Liofilización/instrumentación , Tecnología Farmacéutica/métodos , Temperatura , Guías como Asunto
2.
AAPS PharmSciTech ; 22(7): 221, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34409506

RESUMEN

This work describes lyophilization process validation and consists of two parts. Part I focuses on the process design and is described in the current paper, while part II is devoted to process qualification and continued process verification. The intent of these articles is to provide readers with recent updates on lyophilization validation in the light of community-based combined opinion on the process and reflect the industrial prospective. In this paper, the design space approach for process design is described in details, and examples from practice are provided. The approach shows the relationship between the process inputs; it is based on first principles and gives a thorough scientific understanding of process and product. The lyophilization process modeling and scale-up are also presented showing the impact of facility, equipment, and vial heat transfer coefficient. The case studies demonstrating the effect of batch sizes, fill volume, and dose strength to show the importance of modeling as well as the effect of controlled nucleation on product resistance are discussed.


Asunto(s)
Calor , Tecnología Farmacéutica , Liofilización , Estudios Prospectivos , Temperatura
3.
AAPS PharmSciTech ; 22(8): 266, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750693

RESUMEN

This work describes the lyophilization process validation and consists of two parts. Part one (Part I: Process Design and Modeling) focuses on the process design and is described in the previous paper, while the current paper is devoted to process qualification and continued process verification. The goal of the study is to show the cutting edge of lyophilization validation based on the integrated community-based opinion and the industrial perspective. This study presents best practices for batch size determination and includes the effect of batch size on drying time, process parameters selection strategies, and batch size overage to compensate for losses during production. It also includes sampling strategies to demonstrate batch uniformity as well as the use of statistical models to ensure adequate sampling. Based on the LyoHUB member organizations survey, the best practices in determining the number of PPQ runs are developed including the bracketing approach with minimum and maximum loads. Standard practice around CQA and CPP selection is outlined and shows the advantages of using control charts and run charts for process trending and quality control. The case studies demonstrating the validation strategy for monoclonal antibody and the impact of the loading process on the lyophilization cycle and product quality as well as the special case of lyophilization for dual-chamber cartridge system are chosen to illustrate the process validation. The standard practices in the validation of the lyophilization process, special lyophilization processes, and their impact on the validation strategy are discussed.


Asunto(s)
Desecación , Modelos Estadísticos , Liofilización , Control de Calidad , Temperatura
4.
AAPS PharmSciTech ; 20(7): 263, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31338714

RESUMEN

Modeling of the lyophilization process, based on the steady-state heat and mass transfer, is a useful tool in understanding and optimizing of the process, developing an operating design space following the quality-by-design principle, and justifying occasional process deviations during routine manufacturing. The steady-state model relies on two critical parameters, namely, the vial heat transfer coefficient, Kv, and the cake resistance, Rp. The classical gravimetric method used to measure Kv is tedious, time- and resource-consuming, and can be challenging and costly for commercial scale dryers. This study proposes a new approach to extract both Kv and Rp directly from an experimental run (e.g., temperature and Pirani profiles). The new methodology is demonstrated using 5% w/v mannitol model system. The values of Kv obtained using this method are comparable to those measured using the classic gravimetric method. Application of the proposed approach to process scale-up and technology transfer is illustrated using a case study. The new approach makes the steady-state model a simple and reliable tool for model parameterization, thus maximizes its capability and is particularly beneficial for transfer products from lab/pilot to commercial manufacturing.


Asunto(s)
Liofilización/métodos , Transferencia de Tecnología , Tecnología Farmacéutica/métodos , Temperatura
6.
J Pharm Sci ; 110(2): 968-981, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33248058

RESUMEN

Lyophilization modeling is well documented in academic circles but has not yet been widely adopted by pharmaceutical manufacturing companies. To facilitate wider adoption and implementation, an accessible ExcelTM-based tool is provided, presenting several fresh examples as a practical introduction to the process of modeling the primary drying phase. Case studies are presented of the tool's application during process development and scale up which highlight business benefits that have been realized by using the model. The authors and contributors are members of the BioPhorum's Lyophilization Workstream and represent several pharmaceutical companies. The current manuscript is intended to serve as a pathway to not only share the collective knowledge on the topic but also accelerate its adoption in the industry.


Asunto(s)
Desecación , Tecnología Farmacéutica , Liofilización , Temperatura
7.
J Pharm Sci ; 109(2): 1043-1049, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31606541

RESUMEN

The objective of this work is to apply a sensitivity study to assess the robustness of the primary drying step of pharmaceutical lyophilization with respect to deviations in process parameters. The sensitivity study can provide valuable information regarding the effect of process input parameters on the product quality that can aid in designing robust lyophilization processes. In this study, the output response is related to its inputs using Smolyak sparse grid generalized polynomial chaos method, and the sensitivity was calculated using elementary effects method. Sensitivity of chamber pressure and shelf temperature on product temperature of 2 sucrose-based and one mannitol-based formulation was studied, and the results were analyzed in terms of risk of adverse effects due to process deviations on the product quality. The study revealed that the sensitivity varies among formulations, and preliminary information regarding the possible impact of process deviations can be obtained from the process cycle diagram. The product temperature showed greater sensitivity toward the change in the shelf temperature than toward change in the chamber pressure for the greater part of the primary drying stage. An aggressive process-deviation scenario at the late stage of primary drying was also studied for different formulations, and the results were consistent with the sensitivity study.


Asunto(s)
Química Farmacéutica , Preparaciones Farmacéuticas , Desecación , Liofilización , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA