Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 39(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37756700

RESUMEN

MOTIVATION: The nuclear pore complex (NPC) is the only passageway for macromolecules between nucleus and cytoplasm, and an important reference standard in microscopy: it is massive and stereotypically arranged. The average architecture of NPC proteins has been resolved with pseudoatomic precision, however observed NPC heterogeneities evidence a high degree of divergence from this average. Single-molecule localization microscopy (SMLM) images NPCs at protein-level resolution, whereupon image analysis software studies NPC variability. However, the true picture of this variability is unknown. In quantitative image analysis experiments, it is thus difficult to distinguish intrinsically high SMLM noise from variability of the underlying structure. RESULTS: We introduce CIR4MICS ('ceramics', Configurable, Irregular Rings FOR MICroscopy Simulations), a pipeline that synthesizes ground truth datasets of structurally variable NPCs based on architectural models of the true NPC. Users can select one or more N- or C-terminally tagged NPC proteins, and simulate a wide range of geometric variations. We also represent the NPC as a spring-model such that arbitrary deforming forces, of user-defined magnitudes, simulate irregularly shaped variations. Further, we provide annotated reference datasets of simulated human NPCs, which facilitate a side-by-side comparison with real data. To demonstrate, we synthetically replicate a geometric analysis of real NPC radii and reveal that a range of simulated variability parameters can lead to observed results. Our simulator is therefore valuable to test the capabilities of image analysis methods, as well as to inform experimentalists about the requirements of hypothesis-driven imaging studies. AVAILABILITY AND IMPLEMENTATION: Code: https://github.com/uhlmanngroup/cir4mics. Simulated data: BioStudies S-BSST1058.


Asunto(s)
Microscopía , Poro Nuclear , Humanos , Poro Nuclear/química , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/análisis , Proteínas de Complejo Poro Nuclear/metabolismo , Imagen Individual de Molécula/métodos , Programas Informáticos
2.
Curr Biol ; 30(16): 3167-3182.e4, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32619476

RESUMEN

Animals exhibit innate and learned preferences for temperature and humidity-conditions critical for their survival and reproduction. Leveraging a whole-brain electron microscopy volume, we studied the adult Drosophila melanogaster circuitry associated with antennal thermo- and hygrosensory neurons. We have identified two new target glomeruli in the antennal lobe, in addition to the five known ones, and the ventroposterior projection neurons (VP PNs) that relay thermo- and hygrosensory information to higher brain centers, including the mushroom body and lateral horn, seats of learned and innate behavior. We present the first connectome of a thermo- and hygrosensory neuropil, the lateral accessory calyx (lACA), by reconstructing neurons downstream of heating- and cooling-responsive VP PNs. A few mushroom body-intrinsic neurons solely receive thermosensory input from the lACA, while most receive additional olfactory and thermo- and/or hygrosensory PN inputs. Furthermore, several classes of lACA-associated neurons form a local network with outputs to other brain neuropils, suggesting that the lACA serves as a hub for thermo- and hygrosensory circuitry. For example, DN1a neurons link thermosensory PNs in the lACA to the circadian clock via the accessory medulla. Finally, we survey strongly connected downstream partners of VP PNs across the protocerebrum; these include a descending neuron targeted by dry-responsive VP PNs, meaning that just two synapses might separate hygrosensory inputs from motor circuits. These data provide a comprehensive first- and second-order layer analysis of Drosophila thermo- and hygrosensory systems and an initial survey of third-order neurons that could directly modulate behavior.


Asunto(s)
Conectoma , Drosophila melanogaster/fisiología , Neuronas/metabolismo , Neurópilo/metabolismo , Células Receptoras Sensoriales/metabolismo , Sinapsis/fisiología , Termorreceptores/metabolismo , Animales , Femenino , Neuronas/citología , Vías Olfatorias
3.
PLoS One ; 13(10): e0205348, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30296290

RESUMEN

Synaptic vesicles (SVs) are a key component of neuronal signaling and fulfil different roles depending on their composition. In electron micrograms of neurites, two types of vesicles can be distinguished by morphological criteria, the classical "clear core" vesicles (CCV) and the typically larger "dense core" vesicles (DCV), with differences in electron density due to their diverse cargos. Compared to CCVs, the precise function of DCVs is less defined. DCVs are known to store neuropeptides, which function as neuronal messengers and modulators [1]. In C. elegans, they play a role in locomotion, dauer formation, egg-laying, and mechano- and chemosensation [2]. Another type of DCVs, also referred to as granulated vesicles, are known to transport Bassoon, Piccolo and further constituents of the presynaptic density in the center of the active zone (AZ), and therefore are important for synaptogenesis [3]. To better understand the role of different types of SVs, we present here a new automated approach to classify vesicles. We combine machine learning with an extension of our previously developed vesicle segmentation workflow, the ImageJ macro 3D ART VeSElecT. With that we reliably distinguish CCVs and DCVs in electron tomograms of C. elegans NMJs using image-based features. Analysis of the underlying ground truth data shows an increased fraction of DCVs as well as a higher mean distance between DCVs and AZs in dauer larvae compared to young adult hermaphrodites. Our machine learning based tools are adaptable and can be applied to study properties of different synaptic vesicle pools in electron tomograms of diverse model organisms.


Asunto(s)
Neuronas/metabolismo , Vesículas Secretoras/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Axones/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Aprendizaje Automático , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Neuropéptidos/metabolismo , Transporte de Proteínas , Vesículas Secretoras/clasificación , Vesículas Sinápticas/clasificación , Vesículas Sinápticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA