Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982418

RESUMEN

Akt is a key regulatory protein of cancer stem cells (CSCs) and is responsible for cancer aggressiveness and metastasis. Targeting Akt is beneficial for the development of cancer drugs. renieramycin T (RT) has been reported to have Mcl-1 targeting activity, and the study of the structure-activity relationships (SARs) demonstrated that cyanide and the benzene ring are essential for its effects. In this study, novel derivatives of the RT right-half analog with cyanide and the modified ring were synthesized to further investigate the SARs for improving the anticancer effects of RT analogs and evaluate CSC-suppressing activity through Akt inhibition. Among the five derivatives, a compound with a substituted thiazole structure (DH_25) exerts the most potent anticancer activity in lung cancer cells. It has the ability to induce apoptosis, which is accompanied by an increase in PARP cleavage, a decrease in Bcl-2, and a diminishment of Mcl-1, suggesting that residual Mcl-1 inhibitory effects exist even after modifying the benzene ring to thiazole. Furthermore, DH_25 is found to induce CSC death, as well as a decrease in CSC marker CD133, CSC transcription factor Nanog, and CSC-related oncoprotein c-Myc. Notably, an upstream member of these proteins, Akt and p-Akt, are also downregulated, indicating that Akt can be a potential target of action. Computational molecular docking showing a high-affinity interaction between DH_25 and an Akt at the allosteric binding site supports that DH_25 can bind and inhibit Akt. This study has revealed a novel SAR and CSC inhibitory effect of DH_25 via Akt inhibition, which may encourage further development of RT compounds for cancer therapy.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Benceno/farmacología , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Neoplasias Pulmonares/metabolismo , Apoptosis , Células Madre Neoplásicas/metabolismo , Tiazoles/farmacología , Proliferación Celular
2.
Biomedicines ; 12(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38672078

RESUMEN

Shrimp is a rich source of bioactive molecules that provide health benefits. However, the high cholesterol content in shrimp oil may pose a risk. We utilized the cholesterol elimination method to obtain cholesterol-free shrimp lipids (CLs) and investigated their anticancer potential, focusing on cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT). Our study focused on CSCs and EMT, as these factors are known to contribute to cancer metastasis. The results showed that treatment with CLs at doses ranging from 0 to 500 µg/mL significantly suppressed the cell migration ability of human lung cancer (H460 and H292) cells, indicating its potential to inhibit cancer metastasis. The CLs at such concentrations did not cause cytotoxicity to normal human keratinocytes. Additionally, CL treatment was found to significantly reduce the levels of Snail, Slug, and Vimentin, which are markers of EMT. Furthermore, we investigated the effect of CLs on CSC-like phenotypes and found that CLs could significantly suppress the formation of a three-dimensional (3D) tumor spheroid in lung cancer cells. Furthermore, CLs induced apoptosis in the CSC-rich population and significantly depleted the levels of CSC markers CD133, CD44, and Sox2. A mechanistic investigation demonstrated that exposing lung cancer cells to CLs downregulated the phosphorylation of Akt and mTOR, as well as c-Myc expression. Based on these findings, we believe that CLs may have beneficial effects on health as they potentially suppress EMT and CSCs, as well as the cancer-potentiating pathway of Akt/mTOR/c-Myc.

3.
Biomed Res Int ; 2022: 7270782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35726317

RESUMEN

The leaves of black rice, well-known as postharvest agricultural waste, contain a rich source of antioxidants with multiple benefits for human health. In the present study, the ethyl acetate fraction obtained from black rice leaf was separated into five subfractions using Sephadex LH-20 column chromatography, and their antioxidant and anticancer activities were investigated. The results revealed that among all the subfractions, subfraction 5 (Sub5) showed the highest total phenolic and flavonoid values. The antioxidant activity was also superior in Sub5 (the IC50 values are 3.23, 31.95, and 72.74 µg/mL, in the DPPH, ABTS, and reducing power assays, respectively) compared to the other subfractions. All subfractions, in a time-dependent manner, inhibited the proliferation of hepatoma (HepG2), breast (MCF-7), and colorectal (Caco-2) cancer cells, especially the Sub5. Thus, Sub5 was employed to conduct the cell cycle and cell apoptosis by flow cytometry. Sub5 significantly increased the accumulation of cells at the Sub-G1 phase in HepG2 cells (44.5%, at 48 h). Furthermore, it could trigger annexin V-detected apoptosis through mitochondrial and death receptor pathways accompanied by the suppression of PI3K/Akt and Erk signaling pathways. In addition, HPLC-DAD-MS/MS was conducted to characterize the bioactive constituents in the most potent antioxidant, cytotoxic, and apoptosis-inducing subfraction. Conclusively, Sub5 may have high potential as functional dietary supplements to inhibit the development of HepG2 liver cancer.


Asunto(s)
Carcinoma , Oryza , Extractos Vegetales , Antioxidantes/química , Células CACO-2 , Proliferación Celular , Células Hep G2 , Humanos , Células MCF-7 , Oryza/química , Fosfatidilinositol 3-Quinasas , Extractos Vegetales/farmacología , Hojas de la Planta/química , Espectrometría de Masas en Tándem
4.
Foods ; 10(12)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34945535

RESUMEN

Black rice leaves (Oryza sativa L.) are a major part of rice straw left in open fields after rice harvest as agricultural waste. In this study, crude ethanolic extract (CEE) and various solvent fractions (hexane (Hex), ethyl acetate (EtOAc), n-butanol (n-BuOH), and aqueous fractions) of black rice leaves were investigated for their bioactive compound contents as well as antioxidant, anti-inflammatory, and anticancer activities. The results demonstrated that among all the fractions, the n-BuOH fraction presented the greatest contents of total phenolics and flavonoids, while anthocyanins were found to be abundant in the n-BuOH and aqueous fractions, which also exhibited powerful antioxidant abilities according to DPPH and ABTS radical-scavenging assays and a reducing power assay. Regarding anti-inflammatory activity, CEE and EtOAc reduced the production of NO and cytokine secretion (PGE2, IL-6, and IL-1ß) but displayed less effect on tumor necrosis factor α (TNF-α) release in lipopolysaccharide (LPS)-induced RAW 264.7 cells. They also significantly decreased iNOS and COX-2 protein expression. Additionally, the phenolics-rich ethyl acetate fraction showed the greatest activity against HepG2 liver carcinoma cells, inhibited cell growth, increased the Sub-G1 population, and induced apoptosis via mitochondrion-dependent mechanisms. In conclusion, black rice leaves, a byproduct of rice, exhibited strong antioxidant, anti-inflammatory, and anticancer capacities and might be useful for application in functional foods and the pharmaceutical industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA