Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 44(3): 609-616, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29353373

RESUMEN

Maternal immune challenge has proved to induce moderate to severe behavioral disabilities in the offspring. Cognitive/behavioral deficits are supported by changes in synaptic plasticity in different brain areas. We have reported previously that prenatal exposure to bacterial LPS could induce inhibition of hippocampal long-term potentiation (LTP) in the CA1 area of the juvenile/adult male offspring associated with spatial learning inabilities. Nevertheless, deficits in plasticity could be observed at earlier stages as shown by the early loss of long-term depression (LTD) in immature animals. Moreover, aberrant forms of plasticity were also evidenced such as the transient occurrence of LTP instead of LTD in 15-25 day-old animals. This switch from LTD to LTP seemed to involve the activation of metabotropic glutamate receptor subtype 1 and 5 (mGlu1/5). We have thus investigated here whether the long-term depression elicited by the direct activation of these receptors (mGlu-LTD) with a selective agonist was also disturbed after prenatal stress. We find that in prenatally stressed rats, mGlu1/5 stimulation elicits long-term potentiation (mGlu-LTP) independently of N-methyl-D-aspartate receptors. Both mGlu5 and mGlu1 receptors are involved in this switch of plasticity. Moreover, this mGlu-LTP is still observed at later developmental stages than previously reported, i.e. after 25 day-old. In addition, increasing synaptic GABA with tiagabine tends to inhibit mGlu-LTP occurrence. By contrast, long-term depression induced with the activation of CB1 cannabinoid receptor is unaffected by prenatal stress. Therefore, prenatal stress drastically alters mGlu1/5-associated plasticity throughout development. MGlu-mediated plasticity is an interesting parameter to probe the long-lasting deficits reported in this model.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Receptores de Glutamato Metabotrópico/inmunología , Transmisión Sináptica/fisiología , Animales , Depresión/inmunología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Hipocampo/inmunología , Potenciación a Largo Plazo/inmunología , Plasticidad Neuronal/inmunología , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/inmunología , Transmisión Sináptica/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA