Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Science ; 228(4700): 685-90, 1985 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-3887570

RESUMEN

The CUP1 gene of yeast encodes a small, metallothionein-like protein that binds to and is inducible by copper. A gene replacement experiment shows that this protein protects cells against copper poisoning but is dispensable for normal cellular growth and development throughout the yeast life cycle. The transcription of CUP1 is negatively autoregulated. This feedback mechanism, which is mediated through upstream control sequences, may play an important role in heavy metal homeostasis.


Asunto(s)
Metalotioneína/fisiología , Saccharomyces cerevisiae/enzimología , Proteínas Portadoras , Cobre/metabolismo , Sulfato de Cobre , Inducción Enzimática , Genes Fúngicos , Metalotioneína/biosíntesis , Metalotioneína/genética , Mutación , Operón , Plásmidos , ARN Mensajero/biosíntesis , Saccharomyces cerevisiae/genética
2.
Science ; 231(4740): 854-6, 1986 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-3080806

RESUMEN

Expression of two monkey metallothioneins in yeast leads to complementation of both known functions of the endogenous yeast copperthionein gene, namely copper detoxification and autoregulation of transcription. The metallothionein-like proteins of higher and lower eukaryotes are therefore functionally analogous despite their dissimilar primary sequences.


Asunto(s)
Metalotioneína/fisiología , Saccharomyces cerevisiae/fisiología , Animales , Cobre/metabolismo , Regulación de la Expresión Génica , Prueba de Complementación Genética , Haplorrinos , Metalotioneína/genética , Especificidad de la Especie , Relación Estructura-Actividad , Transformación Genética
3.
Mol Cell Biol ; 8(7): 2745-52, 1988 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-3043194

RESUMEN

Copper resistance in Saccharomyces cerevisiae is mediated, in large part, by the CUP1 locus, which encodes a low-molecular-weight, cysteine-rich metal-binding protein. Expression of the CUP1 gene is regulated at the level of transcriptional induction in response to high environmental copper levels. This report describes the isolation of a yeast mutant, ace1-1, which is defective in the activation of CUP1 expression upon exposure to exogenous copper. The ace1-1 mutation is recessive and lies in a genetic element that encodes a trans-acting CUP1 regulatory factor. The wild-type ACE1 gene was isolated by in vivo complementation and restores copper inducibility of CUP1 expression and copper resistance to the otherwise copper-sensitive ace1-1 mutant. Linkage analysis and gene deletion experiments verified that this gene represents the authentic ACE1 locus. ACE1 maps to the left arm of chromosome VII, 9 centimorgans centromere distal to lys5. The ACE1 gene appears to play a direct or indirect positive role in activation of CUP1 expression in response to elevated copper concentrations.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica , Metalotioneína/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Deleción Cromosómica , Clonación Molecular , Cobre/farmacología , Genes Reguladores , Prueba de Complementación Genética , Mutación , ARN Mensajero/biosíntesis , Saccharomyces cerevisiae/efectos de los fármacos
4.
Mol Cell Biol ; 16(2): 724-34, 1996 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8552101

RESUMEN

Rapid transcriptional autoactivation of the Candida glabrata AMT1 copper metalloregulatory transcription factor gene is essential for survival in the presence of high extracellular copper concentrations. Analysis of the interactions between purified recombinant AMT1 protein and the AMT1 promoter metal regulatory element was carried out by a combination of missing-nucleoside analysis, ethylation interference, site-directed mutagenesis, and quantitative in vitro DNA binding studies. The results of these experiments demonstrate that monomeric AMT1 binds the metal regulatory element with very high affinity and utilizes critical contacts in both the major and minor grooves. A single adenosine residue in the minor groove, conserved in all known yeast Cu metalloregulatory transcription factor DNA binding sites, plays a critical role in both AMT1 DNA binding in vitro and Cu-responsive AMT1 gene transcription in vivo. Furthermore, a mutation in the AMT1 Cu-activated DNA binding domain which converts a single arginine, found in a conserved minor groove binding domain, to lysine markedly reduces AMT1 DNA binding affinity in vitro and results in a severe defect in the ability of C. glabrata cells to mount a protective response against Cu toxicity.


Asunto(s)
Candida/genética , Cobre/farmacología , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión , Candida/efectos de los fármacos , Secuencia Conservada , Proteínas de Unión al ADN/genética , Proteínas Fúngicas , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Unión Proteica , Factores de Transcripción/genética
5.
Mol Cell Biol ; 11(1): 476-85, 1991 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-1986241

RESUMEN

Transcription of the Saccharomyces cerevisiae metallothionein gene CUP1 is induced in response to high environmental levels of copper. Induction requires the ACE1 gene product, which binds to specific sites in the promoter region of the CUP1 gene. In this study, we found that deleting the entire coding sequence of the ACE1 gene resulted in a decrease in basal-level transcription of CUP1 to low but detectable levels and conferred a copper-sensitive phenotype to the cells. We have isolated a gene, designated ACE2, which when present on a high-copy-number plasmid suppresses the copper-sensitive phenotype of an ace1-deletion strain. The presence of multiple copies of the ACE2 gene enhanced expression of an unlinked CUP1-lacZ fusion integrated in the yeast genome and resulted in an increase in the steady-state levels of CUP1 mRNA in an ace1-deletion background. A large deletion of the coding region of the genomic copy of ACE2 resulted in a decrease in steady-state levels of CUP1 mRNA, indicating that ACE2 plays a role in regulating basal-level expression of CUP1. The ACE2 open reading frame encodes a polypeptide of 770 amino acids, with putative zinc finger structures near the carboxyl terminus. This protein is 37% identical to the SWI5 gene product, an activator of HO gene transcription in S. cerevisiae, suggesting that ACE2 and SWI5 may have functional similarities.


Asunto(s)
Proteínas de Unión al ADN/genética , Genes Fúngicos , Metalotioneína/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Análisis Mutacional de ADN , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , ARN de Hongos/genética , ARN Mensajero/genética , Mapeo Restrictivo , Transcripción Genética , Dedos de Zinc
6.
Mol Cell Biol ; 11(3): 1232-8, 1991 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-1996089

RESUMEN

In the yeast Saccharomyces cerevisiae, transcription of the metallothionein gene CUP1 is induced by copper and silver. Strains with a complete deletion of the ACE1 gene, the copper-dependent activator of CUP1 transcription, are hypersensitive to copper. These strains have a low but significant basal level of CUP1 transcription. To identify genes which mediate basal transcription of CUP1 or which activate CUP1 in response to other stimuli, we isolated an extragenic suppressor of an ace1 deletion. We demonstrate that a single amino acid substitution in the heat shock transcription factor (HSF) DNA-binding domain dramatically enhances CUP1 transcription while reducing transcription of the SSA3 gene, a member of the yeast hsp70 gene family. These results indicate that yeast metallothionein transcription is under HSF control and that metallothionein biosynthesis is important in response to heat shock stress. Furthermore, our results suggest that HSF may modulate the magnitude of individual heat shock gene transcription by subtle differences in its interaction with heat shock elements and that a single-amino-acid change can dramatically alter the activity of the factor for different target genes.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/genética , Metalotioneína/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Datos de Secuencia Molecular , Mutación , Secuencias Reguladoras de Ácidos Nucleicos , Mapeo Restrictivo , Transcripción Genética
7.
Mol Cell Biol ; 6(4): 1158-63, 1986 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-3537699

RESUMEN

Transcription of the Saccharomyces cerevisiae copper-metallothionein gene, CUP1, inducible by copper. By analyzing deletion and fusion mutants in the CUP1 5'-flanking region, we identified two closely related, tandemly arranged copper regulatory elements. A synthetic version of one of these elements conferred efficient copper induction on a heterologous promoter when present in two tandem copies.


Asunto(s)
Cobre/farmacología , Genes Fúngicos/efectos de los fármacos , Genes Reguladores , Genes/efectos de los fármacos , Metalotioneína/genética , Saccharomyces cerevisiae/genética , Transcripción Genética/efectos de los fármacos , Secuencia de Bases , Deleción Cromosómica , Mutación
8.
Mol Cell Biol ; 18(11): 6340-52, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9774650

RESUMEN

The baker's yeast Saccharomyces cerevisiae possesses a single gene encoding heat shock transcription factor (HSF), which is required for the activation of genes that participate in stress protection as well as normal growth and viability. Yeast HSF (yHSF) contains two distinct transcriptional activation regions located at the amino and carboxyl termini. Activation of the yeast metallothionein gene, CUP1, depends on a nonconsensus heat shock element (HSE), occurs at higher temperatures than other heat shock-responsive genes, and is highly dependent on the carboxyl-terminal transactivation domain (CTA) of yHSF. The results described here show that the noncanonical (or gapped) spacing of GAA units in the CUP1 HSE (HSE1) functions to limit the magnitude of CUP1 transcriptional activation in response to heat and oxidative stress. The spacing in HSE1 modulates the dependence for transcriptional activation by both stresses on the yHSF CTA. Furthermore, a previously uncharacterized HSE in the CUP1 promoter, HSE2, modulates the magnitude of the transcriptional activation of CUP1, via HSE1, in response to stress. In vitro DNase I footprinting experiments suggest that the occupation of HSE2 by yHSF strongly influences the manner in which yHSF occupies HSE1. Limited proteolysis assays show that HSF adopts a distinct protease-sensitive conformation when bound to the CUP1 HSE1, providing evidence that the HSE influences DNA-bound HSF conformation. Together, these results suggest that CUP1 regulation is distinct from that of other classic heat shock genes through the interaction of yHSF with two nonconsensus HSEs. Consistent with this view, we have identified other gene targets of yHSF containing HSEs with sequence and spacing features similar to those of CUP1 HSE1 and show a correlation between the spacing of the GAA units and the relative dependence on the yHSF CTA.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Proteínas Portadoras , Huella de ADN , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Metalotioneína/genética , Datos de Secuencia Molecular , Mutagénesis/genética , Estrés Oxidativo/fisiología , Regiones Promotoras Genéticas/genética , Conformación Proteica , Temperatura , Activación Transcripcional/genética
9.
Mol Cell Biol ; 9(2): 421-9, 1989 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-2651899

RESUMEN

The ACE1 gene of the yeast Saccharomyces cerevisiae is required for copper-inducible transcription of the metallothionein gene (CUP1). The sequence of the cloned ACE1 gene predicted an open reading frame for translation of a 225-amino-acid polypeptide. This polypeptide was characterized by an amino-terminal half rich in cysteine residues and positively charged amino acids. The arrangement of many of the 12 cysteines in the configuration Cys-X-Cys or Cys-X-X-Cys suggested that the ACE1 protein may bind metal ions. The carboxyl-terminal half of the ACE1 protein was devoid of cysteines but was highly acidic in nature. The ability of a bifunctional ACE1-beta-galactosidase fusion protein to accumulate in yeast cell nuclei was consistent with the possibility that ACE1 plays a direct role in the regulation of copper-inducible transcription of the yeast metallothionein gene.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Fúngicas/metabolismo , Metalotioneína/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Cisteína , ADN de Hongos/genética , Genes Fúngicos , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae/genética
10.
Mol Cell Biol ; 4(1): 101-9, 1984 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-6199660

RESUMEN

The M double-stranded RNA component of type 1 killer strains of the yeast Saccharomyces cerevisiae contains an internal 200-base pair adenine- and uracil-rich region. The plus strands of this viral genomic RNA contain an internal adenine-rich region which allows these strands to bind to polyuridylate-Sepharose as tightly as do polyadenylated RNAs with 3'-terminal polyadenylated tracts of 70 to 100 residues. Internal template coding of an adenine-rich tract in positive polarity in vivo and in vitro transcripts of M double-stranded RNA may serve as an alternate method of transcript polyadenylation. The 3'-terminal residue of the in vitro m transcript is a non-template-encoded purine residue. The 5' terminus of this transcript is involved in a stem-and-loop structure which includes an AUG initiation codon, along with potential 18S and 5.8S rRNA binding sites. Except for the 3'-terminal residue, transcription in in vitro shows complete fidelity.


Asunto(s)
Poli A/metabolismo , Virus ARN/metabolismo , ARN Viral/metabolismo , ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Conformación de Ácido Nucleico , ARN Bicatenario/metabolismo , ARN Mensajero , Transcripción Genética
11.
Mol Cell Biol ; 4(1): 92-100, 1984 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-6366515

RESUMEN

The L double-stranded (ds) RNA component of Saccharomyces cerevisiae may contain up to three dsRNA species, each with a distinct sequence but with identical molecular weights. These dsRNAs have been separated from each other by denaturation and polyacrylamide gel electrophoresis. The 3' terminal sequences of the major species, LA dsRNA, were determined. Secondary structural analysis supported the presence of two stem and loop structures at the 3' terminus of the LA positive strand. In strain T132B NK-3, both the LA and LC species are virion encapsidated. Two distinct classes of virions were purified from this strain, each with a different RNA polymerase activity and with distinct protein components. The heavy virions harbored LA dsRNA, whereas the LC dsRNA species co purified with the light virion peak. Thus, LA and LC dsRNAs, when present in the same cell, may be separately encapsidated.


Asunto(s)
Virus ARN/metabolismo , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Conformación de Ácido Nucleico , ARN Bicatenario/aislamiento & purificación , ARN Viral/aislamiento & purificación
12.
Mol Cell Biol ; 18(5): 2514-23, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9599102

RESUMEN

The essential yet toxic nature of copper demands tight regulation of the copper homeostatic machinery to ensure that sufficient copper is present in the cell to drive essential biochemical processes yet prevent the accumulation to toxic levels. In Saccharomyces cerevisiae, the nutritional copper sensor Mac1p regulates the copper-dependent expression of the high affinity Cu(I) uptake genes CTR1, CTR3, and FRE1, while the toxic copper sensor Ace1p regulates the transcriptional activation of the detoxification genes CUP1, CRS5, and SOD1 in response to copper. In this study, we characterized the tandem regulation of the copper uptake and detoxification pathways in response to the chronic presence of elevated concentrations of copper ions in the growth medium. Upon addition of CuSO4, mRNA levels of CTR3 were rapidly reduced to eightfold the original basal level whereas the Ace1p-mediated transcriptional activation of CUP1 was rapid and potent but transient. CUP1 expression driven by an Ace1p DNA binding domain-herpes simplex virus VP16 transactivation domain fusion was also transient, demonstrating that this mode of regulation occurs via modulation of the Ace1p copper-activated DNA binding domain. In vivo dimethyl sulfate footprinting analysis of the CUP1 promoter demonstrated transient occupation of the metal response elements by Ace1p which paralleled CUP1 mRNA expression. Analysis of a Mac1p mutant, refractile for copper-dependent repression of the Cu(I) transport genes, showed an aberrant pattern of CUP1 expression and copper sensitivity. These studies (i) demonstrate that the nutritional and toxic copper metalloregulatory transcription factors Mac1p and Ace1p must sense and respond to copper ions in a dynamic fashion to appropriately regulate copper ion homeostasis and (ii) establish the requirement for a wild-type Mac1p for survival in the presence of toxic copper levels.


Asunto(s)
Proteínas de Transporte de Catión , Cobre/metabolismo , FMN Reductasa , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Antiportadores/metabolismo , Sitios de Unión , Transporte Biológico , Proteínas Portadoras , Cationes/metabolismo , Transportador de Cobre 1 , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Inactivación Metabólica , Proteínas de la Membrana/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Pruebas de Sensibilidad Microbiana , NADH NADPH Oxidorreductasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas SLC31 , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Mol Cell Biol ; 10(1): 426-9, 1990 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-2403647

RESUMEN

The ACE1 protein of Saccharomyces cerevisiae was expressed as a trpE-ACE1 fusion protein in Escherichia coli and shown to bind CUP1 upstream activation sequences at multiple regions in a copper-inducible manner. These binding sites contain within them the sequence 5'-TC(T)4-6GCTG-3', which we propose constitutes an important part of the ACE1 consensus recognition sequence.


Asunto(s)
Metalotioneína/genética , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomyces cerevisiae/genética , Factores de Transcripción/fisiología , Transcripción Genética , Secuencia de Bases , Sitios de Unión , Cobre/farmacología , Escherichia coli , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión
14.
Mol Cell Biol ; 14(12): 8155-65, 1994 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-7969152

RESUMEN

Metallothioneins constitute a class of low-molecular-weight, cysteine-rich metal-binding stress proteins which are biosynthetically regulated at the level of gene transcription in response to metals, hormones, cytokines, and other physiological and environmental stresses. In this report, we demonstrate that the Saccharomyces cerevisiae metallothionein gene, designated CUP1, is transcriptionally activated in response to heat shock and glucose starvation through the action of heat shock transcription factor (HSF) and a heat shock element located within the CUP1 promoter upstream regulatory region. CUP1 gene activation in response to both stresses occurs rapidly; however, heat shock activates CUP1 gene expression transiently, whereas glucose starvation activates CUP1 gene expression in a sustained manner for at least 2.5 h. Although a carboxyl-terminal HSF transcriptional activation domain is critical for the activation of CUP1 transcription in response to both heat shock stress and glucose starvation, this region is dispensable for transient heat shock activation of at least two genes encoding members of the S. cerevisiae hsp70 family. Furthermore, inactivation of the chromosomal SNF1 gene, encoding a serine-threonine protein kinase, or the SNF4 gene, encoding a SNF1 cofactor, abolishes CUP1 transcriptional activation in response to glucose starvation without altering heat shock-induced transcription. These studies demonstrate that the S. cerevisiae HSF responds to multiple, distinct stimuli to activate yeast metallothionein gene transcription and that these stimuli elicit responses through nonidentical, genetically separable signalling pathways.


Asunto(s)
Proteínas Portadoras , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Metalotioneína/genética , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Quinasas Activadas por AMP , Secuencia de Bases , Cartilla de ADN/química , Factores de Transcripción del Choque Térmico , Calor , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , ARN Mensajero/genética , Transducción de Señal , Relación Estructura-Actividad , Factores de Transcripción/fisiología , Transcripción Genética , Activación Transcripcional
15.
Mol Cell Biol ; 14(12): 7792-804, 1994 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-7969120

RESUMEN

Yeast metallothionein, encoded by the CUP1 gene, and its copper-dependent transcriptional activator ACE1 play a key role in mediating copper resistance in Saccharomyces cerevisiae. Using an ethyl methanesulfonate mutant of a yeast strain in which CUP1 and ACE1 were deleted, we isolated a gene, designated CUP9, which permits yeast cells to grow at high concentrations of environmental copper, most notably when lactate is the sole carbon source. Disruption of CUP9, which is located on chromosome XVI, caused a loss of copper resistance in strains which possessed CUP1 and ACE1, as well as in the cup1 ace1 deletion strain. Measurement of intracellular copper levels of the wild-type and cup9-1 mutant demonstrated that total intracellular copper concentrations were unaffected by CUP9. CUP9 mRNA levels were, however, down regulated by copper when yeast cells were grown with glucose but not with lactate or glycerol-ethanol as the sole carbon source. This down regulation was independent of the copper metalloregulatory transcription factor ACE1. The DNA sequence of CUP9 predicts an open reading frame of 306 amino acids in which a 55-amino-acid sequence showed 47% identity with the homeobox domain of the human proto-oncogene PBX1, suggesting that CUP9 is a DNA-binding protein which regulates the expression of important copper homeostatic genes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras , Clonación Molecular , Cobre/metabolismo , Proteínas de Unión al ADN/fisiología , Genes Virales , Prueba de Complementación Genética , Homeostasis , Metalotioneína/fisiología , Datos de Secuencia Molecular , Mutagénesis Insercional , Proto-Oncogenes Mas , ARN de Hongos/genética , ARN Mensajero/genética , Mapeo Restrictivo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factores de Transcripción/fisiología , Proteínas Estructurales Virales/genética
16.
Mol Cell Biol ; 12(9): 3766-75, 1992 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-1508182

RESUMEN

The opportunistic pathogenic yeast Candida glabrata elicits at least two major responses in the presence of high environmental metal levels: transcriptional induction of the metallothionein gene family by copper and the appearance of small (gamma-Glu-Cys)nGly peptides in the presence of cadmium. On the basis of a trans-activation selection scheme in the baker's yeast Saccharomyces cerevisiae, we previously isolated a C. glabrata gene which encodes a copper-activated DNA-binding protein designated AMT1. AMT1 forms multiple specific DNA-protein complexes with both C. glabrata MT-I and MT-IIa promoter DNA fragments. In this report, we localize and define the AMT1-binding sites in the MT-I and MT-IIa promoters and characterize the mode of AMT1 binding. Furthermore, we demonstrate that the AMT1 protein trans activates both the MT-I and MT-IIa genes in vivo in response to copper and that this activation is essential for high-level copper resistance in C. glabrata. Although AMT1-mediated trans activation of the C. glabrata metallothionein genes is essential for copper resistance, AMT1 is completely dispensable for cadmium tolerance. The distinct function that metallothionein genes have in copper but not cadmium detoxification in C. glabrata is in contrast to the role that metallothionein genes play in tolerance to multiple metals in higher organisms.


Asunto(s)
Candida/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Metalotioneína/genética , Familia de Multigenes , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cadmio/farmacología , Candida/enzimología , Clonación Molecular , ADN de Hongos/metabolismo , Desoxirribonucleasa I , Farmacorresistencia Microbiana/genética , Proteínas Fúngicas , Datos de Secuencia Molecular , Unión Proteica , Mapeo Restrictivo , Transcripción Genética
17.
Mol Cell Biol ; 19(1): 402-11, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9858564

RESUMEN

Gene expression in response to heat shock is mediated by the heat shock transcription factor (HSF), which in yeast harbors both amino- and carboxyl-terminal transcriptional activation domains. Yeast cells bearing a truncated form of HSF in which the carboxyl-terminal transcriptional activation domain has been deleted [HSF(1-583)] are temperature sensitive for growth at 37 degreesC, demonstrating a requirement for this domain for sustained viability during thermal stress. Here we demonstrate that HSF(1-583) cells undergo reversible cell cycle arrest at 37 degreesC in the G2/M phase of the cell cycle and exhibit marked reduction in levels of the molecular chaperone Hsp90. As in higher eukaryotes, yeast possesses two nearly identical isoforms of Hsp90: one constitutively expressed and one highly heat inducible. When expressed at physiological levels in HSF(1-583) cells, the inducible Hsp90 isoform encoded by HSP82 more efficiently suppressed the temperature sensitivity of this strain than the constitutively expressed gene HSC82, suggesting that different functional roles may exist for these chaperones. Consistent with a defect in Hsp90 production, HSF(1-583) cells also exhibited hypersensitivity to the Hsp90-binding ansamycin antibiotic geldanamycin. Depletion of Hsp90 from yeast cells wild type for HSF results in cell cycle arrest in both G1/S and G2/M phases, suggesting a complex requirement for chaperone function in mitotic division during stress.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Activación Transcripcional , Antibióticos Antineoplásicos/farmacología , Benzoquinonas , Ciclo Celular , Proteínas de Unión al ADN/fisiología , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Lactamas Macrocíclicas , Quinonas/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Relación Estructura-Actividad , Temperatura , Factores de Transcripción/fisiología
18.
Mol Biol Cell ; 12(11): 3644-57, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11694595

RESUMEN

Under stressful conditions organisms adjust the synthesis, processing, and trafficking of molecules to allow survival from and recovery after stress. In baker's yeast Saccharomyces cerevisiae, the cellular production of ribosomes is tightly matched with environmental conditions and nutrient availability through coordinate transcriptional regulation of genes involved in ribosome biogenesis. On the basis of stress-responsive gene expression and functional studies, we have identified a novel, evolutionarily conserved gene, EMG1, that has similar stress-responsive gene expression patterns as ribosomal protein genes and is required for the biogenesis of the 40S ribosomal subunit. The Emg1 protein is distributed throughout the cell; however, its nuclear localization depends on physical interaction with a newly characterized nucleolar protein, Nop14. Yeast depleted of Nop14 or harboring a temperature-sensitive allele of emg1 have selectively reduced levels of the 20S pre-rRNA and mature18S rRNA and diminished cellular levels of the 40S ribosomal subunit. Neither Emg1 nor Nop14 contain any characterized functional motifs; however, isolation and functional analyses of mammalian orthologues of Emg1 and Nop14 suggest that these proteins are functionally conserved among eukaryotes. We conclude that Emg1 and Nop14 are novel proteins whose interaction is required for the maturation of the 18S rRNA and for 40S ribosome production.


Asunto(s)
Secuencia Conservada , Proteínas Fúngicas/genética , Genes Fúngicos/fisiología , Proteínas Nucleares/genética , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Aminoglicósidos , Animales , Antibacterianos/farmacología , Proteínas Fúngicas/metabolismo , Respuesta al Choque Térmico , Calefacción , Humanos , Ratones , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , ARN Ribosómico 18S/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
19.
Curr Opin Microbiol ; 1(2): 197-203, 1998 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10066474

RESUMEN

Recent studies have shed new light on the complexities of the heat shock response in yeast. Multiple pathways for transcriptional induction of both classic and novel heat shock proteins are emerging together with a more detailed understanding of the interactions between protein chaperones and their physiological targets. New roles for heat shock proteins in defense and recovery from the impacts of thermal stress on critical cellular processes have expanded our understanding of these elaborate and ubiquitous proteins.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/genética
20.
Trends Microbiol ; 7(12): 500-5, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10603486

RESUMEN

Copper is required for processes as conserved as respiration and as specialized as protein modification. Recent exciting findings from studies in yeast cells have revealed the presence of specific pathways for copper transport, trafficking and signal transduction that maintain the delicate balance of this essential yet toxic metal ion.


Asunto(s)
Cobre/metabolismo , Saccharomyces/metabolismo , Homeostasis , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA