Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Solid State Nucl Magn Reson ; 100: 77-84, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31015058

RESUMEN

Silicon nanoparticles (SiNPs) are intriguing materials and their properties fascinate the broader scientific community; they are also attractive to the biological and materials science sub-disciplines because of their established biological and environmental compatibility, as well as their far-reaching practical applications. While characterization of the particle nanostructure can be performed using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy, poor sensitivity due to low Boltzmann population and long acquisition times hinder in-depth studies of these potentially game-changing materials. In this study, we compare two dynamic nuclear polarization (DNP) NMR protocols to boost 29Si sensitivity in hydride-terminated SiNPs. First, we assess a traditional indirect DNP approach, where a nitroxide biradical (AMUPol or bCTbk) is incorporated into a glassing agent and transferred through protons (e- → 1H → 29Si) to enhance the silicon. In this mode, electron paramagnetic resonance (EPR) spectroscopy demonstrated that the hydride-terminated surface was highly reactive with the exogenous biradicals, thus decomposing the radicals within hours and resulting in an enhancement factor, ε, of 3 (TB = 15 s) for the 64 nm SiNP, revealing the surface components. Secondly, direct DNP NMR methods were used to enhance the silicon without the addition of an exogenous radical (i.e., use of dangling bonds as an endogenous radical source). With radical concentrations <1 mM, 29Si enhancements were obtained for the series of SiNPs ranging from 3 to 64 nm. The ability to use direct 29Si DNP transfer (e- → 29Si) shows promise for DNP studies of these inorganic nanomaterials (ε = 6 (TB = 79 min) for 64 nm SiNPs) with highly reactive surfaces, showing the sub-surface and core features. These preliminary findings lay a foundation for future endogenous radical development through tailoring the surface chemistry, targeting further sensitivity gains.

2.
Solid State Nucl Magn Reson ; 93: 1-6, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29758460

RESUMEN

Double and zero quantum filtered (ZQF/DQF) 2H NMR spectroscopy was used to study D2O in five different Nafion membranes, N117, N115, NR212, XL, and HP, in order to assess the effectiveness of the technique for monitoring differences in thickness, membrane reinforcement, and the addition of chemical stabilizers. Experiments were also carried out at 20 and 80 °C to understand if the ZQF/DQF technique could detect changes in the water environments and exchange dynamics as a function of temperature. For two of the membranes, significant decreases in the 1/T2 relaxation rates were observed at 80 °C. The two modified membranes showed changes in the quadrupolar couplings when heated, with the XL membranes showing a drop in the coupling and the HP membranes showing an increase in the coupling. No consistent variations could be associated with thickness, reinforcement or the addition of stabilizers. Overall the technique was able to detect some differences between the membranes but was limited by the variability in the observed NMR data.

3.
ACS Nano ; 15(6): 9368-9378, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-33861576

RESUMEN

Polygermanes are germanium-based analogues of polyolefins and possess polymer backbones made up catenated Ge atoms. In the present contribution we report the preparation of a germanium polyethylene analogue, polydihydrogermane (GeH2)n, via two straightforward approaches that involve topotactic deintercalation of Ca ions from the CaGe Zintl phase. The resulting (GeH2)n possesses morphologically dependent chemical and electronic properties and thermally decomposes to yield amorphous hydrogenated Ge. We also show that the resulting (GeH2)n provides a platform from which functionalized polygermanes can be prepared via thermally induced hydrogermylation-mediated pendant group substitution.

4.
Nanoscale ; 13(39): 16379-16404, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34492675

RESUMEN

Silicon nanoparticles (SiNPs) can be challenging to prepare with defined size, crystallinity, composition, and surface chemistry. As is the case for any nanomaterial, controlling these parameters is essential if SiNPs are to realize their full potential in areas such as alternative energy generation and storage, sensors, and medical imaging. Numerous teams have explored and established innovative synthesis methods, as well as surface functionalization protocols to control these factors. Furthermore, substantial effort has been expended to understand how the abovementioned parameters influence material properties. In the present review we provide a commentary highlighting the benefits and limitations of available methods for preparing silicon nanoparticles as well as demonstrations of tailoring optical and electronic properties through definition of structure (i.e., crystalline vs. amorphous), composition and surface chemistry. Finally, we highlight potential opportunities for future SiNP studies.

5.
Nanoscale ; 12(11): 6271-6278, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32051995

RESUMEN

Surface functionalization is an essential aspect of nanoparticle design and preparation; it can impart stability, processability, functionality, as well as tailor optoelectronic properties that facilitate future applications. Herein we report a new approach toward modifying germanium nanoparticle (GeNP) surfaces and for the first time tether alkyl chains to the NP surfaces through Si-Ge bonds. This was achieved via heteronuclear dehydrocoupling reactions involving alkylsilanes and Ge-H moieties on the NP surfaces. The resulting solution processable RR'2Si-GeNPs (R = octadecyl or PDMS; R' = H or CH3) were characterized using FTIR, Raman, 1H-NMR, XRD, TEM, HAADF, and EELS and were found to retain the crystallinity of the parent GeNP platform.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA