Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Mol Biosci ; 11: 1287553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545417

RESUMEN

During an acute coronary syndrome, atherosclerotic plaque rupture triggers platelet activation and thrombus formation, which may completely occlude a coronary artery leading to ST-elevation myocardial infarction (STEMI). Although emergency percutaneous coronary intervention (PCI) is effective in re-opening the main coronary arteries, the downstream microvasculature can become obstructed by embolised plaque material and thrombus. Dual antiplatelet therapy is recommended by guidelines and used routinely for the management of STEMI to reduce the risk of recurrent atherothrombotic events. However it is unclear to what extent antiplatelet therapy reduces microvascular thrombosis, largely because most tools to assess microvascular thrombosis only became available after antiplatelet therapy was already used in the majority of patients. Platelets play a central role in key aspects of microvascular thrombosis, such as atherosclerotic plaque-induced thrombus development, inflammation and microvascular dysfunction, making them a potential target for novel therapeutic interventions. Currently, more potent antiplatelet agents like GPIIb/IIIa inhibitors may be administered during PCI directly into coronary arteries with high thrombus burden but it is not well-established whether this reduces microvascular thrombosis and they significantly increase the risk of bleeding. In this review article we discuss the role of platelets in microvascular thrombosis, describe how microvascular thrombosis and obstruction can be assessed clinically and explore potential new antiplatelet treatments for this. In particular, we highlight novel antiplatelet drugs targeting the platelet receptor GPVI, as well as PAR4, GPIb-IX-V and 5HT2A receptors. We also discuss the potential benefit of P-selectin inhibitors as they have proven to be effective in reducing microvascular thrombosis in sickle-cell disease which could translate into potential benefits in acute coronary syndrome.

2.
Eur Heart J Cardiovasc Pharmacother ; 10(5): 465-473, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38453424

RESUMEN

Glycoprotein (GP) VI (GPVI) plays a major role in thrombosis but not haemostasis, making it a promising antithrombotic target. The primary role of GPVI on the surface of platelets is a signalling receptor for collagen, which is one of the most potent thrombotic sub-endothelial components that is exposed by atherosclerotic plaque rupture. Inhibition of GPVI has therefore been investigated as a strategy for treatment and prevention of atherothrombosis, such as during stroke and acute coronary syndromes. A range of specific GPVI inhibitors have been characterized, and two of these inhibitors, glenzocimab and revacept, have completed Phase II clinical trials in ischaemic stroke. In this review, we summarize mechanisms of GPVI activation and the latest progress of clinically tested GPVI inhibitors, including their mechanisms of action. By focusing on what is known about GPVI activation, we also discuss whether alternate strategies could be used to target GPVI.


Asunto(s)
Fibrinolíticos , Glicoproteínas de Membrana Plaquetaria , Humanos , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Glicoproteínas de Membrana Plaquetaria/metabolismo , Animales , Fibrinolíticos/uso terapéutico , Fibrinolíticos/efectos adversos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Trombosis/prevención & control , Trombosis/tratamiento farmacológico , Trombosis/sangre , Inhibidores de Agregación Plaquetaria/uso terapéutico , Inhibidores de Agregación Plaquetaria/efectos adversos
3.
Blood Adv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968150

RESUMEN

Platelet CLEC-2 is a hemITAM-containing receptor which has a critical role in venous thrombosis, but minimal involvement in haemostasis. CLEC-2 can be blocked by Btk inhibitors. Treatment with ibrutinib is associated with increased bleeding due to off-target inhibition of Src family kinases (SFKs). Patients with X-linked agammaglobulinemia (XLA) who lack Btk however do not bleed, suggesting selective Btk inhibition is a viable antithrombotic strategy. We assessed the effects of selective Btk inhibitors PRN1008 (rilzabrutinib) and PRN473 on platelet signalling and function mediated by CLEC-2 and GPVI. We used healthy donor and XLA platelets to determine off-target inhibitor effects. Inferior vena cava (IVC) stenosis and Salmonella infection mouse models were used to assess antithrombotic effects of PRN473 in vivo. PRN1008 and PRN473 potently inhibited CLEC-2-mediated platelet activation to rhodocytin. No off-target inhibition of SFKs was seen. PRN1008 treatment of Btk-deficient platelets resulted in minor additional inhibition of aggregation and tyrosine phosphorylation, likely reflecting inhibition of Tec. No effect on GPCR-mediated platelet function was observed. PRN473 significantly reduced the number of thrombi in podoplanin positive vessels following Salmonella infection and the presence of IVC thrombosis following vein stenosis. The potent inhibition of human platelet CLEC-2, and reduced thrombosis in in vivo models, together with the lack of off-target SFK inhibition and absence of bleeding reported in rilzabrutinib treated immune thrombocytopenia patients, suggest Btk inhibition as a promising antithrombotic strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA