RESUMEN
The canonical Wnt signaling pathway plays a fundamental role in embryonic as well as in adult development. Consequently, dysregulation of the pathway has been linked to a wide spectrum of pathological conditions. In a program aimed at the identification of small molecule inhibitors of the canonical Wnt pathway we identified a series of 2-aminopyrimidine derivatives which specifically inhibited the pathway with minimal or no sign of cellular toxicity. The hit molecules 1 and 2 showed promising inhibitory activity with IC50 values of approximately 10 µM, but low solubility and metabolic stability. During the early stage of the hit series exploration, the pyrimidine core was variously decorated to obtain active compounds with a better physico-chemical profile. In particular, compound 13 showed Wnt inhibition activity comparable to hit molecules 1 and 2, with improved physico-chemical properties. Therefore, this series of compounds may be considered a promising starting point for the design of novel small molecule inhibitors of the canonical Wnt pathway.
Asunto(s)
Pirimidinas/farmacología , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo , Humanos , Estructura Molecular , Pirimidinas/metabolismo , Relación Estructura-Actividad , Vía de Señalización Wnt/genéticaRESUMEN
INTRODUCTION: Symptomatic testing and asymptomatic screening for SARS-CoV-2 continue to be essential tools for mitigating virus transmission. Though COVID-19 diagnostics initially defaulted to oropharyngeal or nasopharyngeal sampling, the worldwide urgency to expand testing efforts spurred innovative approaches and increased diversity of detection methods. Strengthening innovation and facilitating widespread testing remains critical for global health, especially as additional variants emerge and other mitigation strategies are recalibrated. AREAS COVERED: A growing body of evidence reflects the need to expand testing efforts and further investigate the efficiency, sensitivity, and acceptability of saliva samples for SARS-CoV-2 detection. Countries have made pandemic response decisions based on resources, costs, procedures, and regional acceptability - the adoption and integration of saliva-based testing among them. Saliva has demonstrated high sensitivity and specificity while being less invasive relative to nasopharyngeal swabs, securing saliva's position as a more acceptable sample type. EXPERT OPINION: Despite the accessibility and utility of saliva sampling, global implementation remains low compared to swab-based approaches. In some cases, countries have validated saliva-based methods but face challenges with testing implementation or expansion. Here, we review the localities that have demonstrated success with saliva-based SARS-CoV-2 testing approaches and can serve as models for transforming concepts into globally-implemented best practices.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Humanos , Nasofaringe , Pandemias , Saliva , Manejo de Especímenes/métodosRESUMEN
High-throughput screening against the human sirtuin SIRT1 led to the discovery of a series of indoles as potent inhibitors that are selective for SIRT1 over other deacetylases and NAD-processing enzymes. The most potent compounds described herein inhibit SIRT1 with IC50 values of 60-100 nM, representing a 500-fold improvement over previously reported SIRT inhibitors. Preparation of enantiomerically pure indole derivatives allowed for their characterization in vitro and in vivo. Kinetic analyses suggest that these inhibitors bind after the release of nicotinamide from the enzyme and prevent the release of deacetylated peptide and O-acetyl-ADP-ribose, the products of enzyme-catalyzed deacetylation. These SIRT1 inhibitors are low molecular weight, cell-permeable, orally bioavailable, and metabolically stable. These compounds provide chemical tools to study the biology of SIRT1 and to explore therapeutic uses for SIRT1 inhibitors.
Asunto(s)
Carbazoles/síntesis química , Inhibidores de Histona Desacetilasas , Indoles/síntesis química , Sirtuinas/antagonistas & inhibidores , Animales , Disponibilidad Biológica , Células CHO , Carbazoles/química , Carbazoles/farmacología , Permeabilidad de la Membrana Celular , Cricetinae , Cricetulus , Estabilidad de Medicamentos , Fluorometría , Histona Desacetilasas/química , Humanos , Técnicas In Vitro , Indoles/química , Indoles/farmacología , Cinética , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/metabolismo , NAD/química , NAD+ Nucleosidasa/química , Niacinamida/química , Ratas , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Sirtuina 1 , Sirtuinas/química , Estereoisomerismo , Relación Estructura-ActividadRESUMEN
We report a novel chemical class of potent oxytocin receptor antagonists showing a high degree of selectivity against the closely related vasopressin receptors (V1a, V1b, V2). An initial compound, 7, was shown to be active in an animal model of preterm labor when administered by the intravenous but not by the oral route. Stepwise SAR investigations around the different structural elements revealed one position, the arenesulfonyl moiety, to be amenable to structural changes. Consequently, this position was used to introduce a variety of substituents to improve the physicochemical properties. Some of the resulting analogues were found to be superior to 7 both in terms of potency in vitro and aqueous solubility, which translated into significantly improved efficacy in the animal model after intravenous and oral administration. The best compound, 73, potently inhibited oxytocin-induced uterine contractions in nonpregnant rats and reduced spontaneous uterine contractions in late-term pregnant rats.
Asunto(s)
Hidrazinas/síntesis química , Receptores de Oxitocina/antagonistas & inhibidores , Sulfonamidas/síntesis química , Administración Oral , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas , Unión Competitiva , Línea Celular , Cricetinae , Cricetulus , Femenino , Humanos , Hidrazinas/química , Hidrazinas/farmacología , Técnicas In Vitro , Trabajo de Parto Prematuro/fisiopatología , Trabajo de Parto Prematuro/prevención & control , Embarazo , Ensayo de Unión Radioligante , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología , Contracción Uterina/efectos de los fármacosRESUMEN
Virtual screening methods using structure-based, pharmacophore-based and descriptor based protocols may be used to identify ligands for the G-protein coupled receptor target family. A complementary approach is the synthesis and screening of compound libraries designed using privileged motifs and/or based on validated hit molecules. A virtual screening approach based on molecular docking performed with GOLD using a templated homology model and a consensus scoring procedure can identify vasopressin 1a receptor antagonists. In a separate project a library design and synthesis approach based around validated hit GPCR ligands led to the identification of potent oxytocin antagonists. Subsequent optimisation of the initial library compounds has provided compounds that are now being evaluated in the clinic for the treatment of preterm labour.
Asunto(s)
Receptores Acoplados a Proteínas G/efectos de los fármacos , Animales , Simulación por Computador , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Oxitocina/antagonistas & inhibidores , Relación Estructura-ActividadRESUMEN
The functional in vitro study of the enantiomers of imidazolines 4-7 highlighted the role played by the nature of the ortho phenyl substituent in determining the preferred α(2C)-AR configuration. Indeed, the (S) enantiomers of 4-6 or (R) enantiomer of 7 behave as eutomers and activate this subtype as full agonists; the corresponding distomers are partial agonists. Because in clinical pain management with opioids α(2C)-AR agonists, devoid of the α(2A)-AR-mediated side effects, may represent an improvement over current therapies with clonidine like drugs, 4 and its enantiomers, showing α(2C)-agonism/α(2A)-antagonism, have been studied in vivo. The data suggest that partial α(2C)-activation is compatible with effective enhancement of morphine analgesia and reduction both of morphine tolerance acquisition and morphine dependence acquisition and expression. On the contrary, full α(2C)-activation appears advantageous in reducing morphine tolerance expression. Interestingly, the biological profile displayed by 4 (allyphenyline) and its eutomer (S)-(+)-4 has been found to be very unusual.
Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/síntesis química , Antagonistas de Receptores Adrenérgicos alfa 2/síntesis química , Compuestos Alílicos/síntesis química , Analgésicos/síntesis química , Imidazolinas/síntesis química , Dependencia de Morfina/prevención & control , Morfina/farmacología , Agonistas de Receptores Adrenérgicos alfa 2/química , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/química , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Compuestos Alílicos/química , Compuestos Alílicos/farmacología , Analgésicos/química , Analgésicos/farmacología , Animales , Células CHO , Clonidina/farmacología , Cricetinae , Cricetulus , Agonismo Parcial de Drogas , Tolerancia a Medicamentos , Humanos , Imidazolinas/química , Imidazolinas/farmacología , Masculino , Ratones , Estereoisomerismo , Relación Estructura-ActividadRESUMEN
We have discovered a new, potent, selective, and orally active oxytocin receptor antagonist, (2S,4Z)-N-[(2S)-2-hydroxy-2-phenylethyl]-4-(methoxyimino)-1-[(2'-methyl[1,1'-biphenyl]-4-yl)carbonyl]-2-pyrrolidinecarboxamide (compound 1). We report the biochemical, pharmacological, and pharmacokinetic characterization in vitro and in vivo of this compound. Compound 1 competitively inhibits binding of [3H]oxytocin and the peptide antagonist 125I-ornithine vasotocin analog to human and rat oxytocin receptor expressed in human embryonic kidney 293-EBNA or Chinese hamster ovary cells with nanomolar potency. Selectivity against vasopressin receptor subtypes is >6-fold for V1a and >350-fold for V2 and V1b. Compound 1 inhibits oxytocin-evoked intracellular Ca2+ mobilization (IC50 = 8 nM). Compound 1 has no intrinsic agonist activity at the oxytocin receptor. Oxytocininduced contraction of isolated rat uterine strips is blocked by compound 1 (pA2 = 7.82). In anesthetized nonpregnant rats, single administration of compound 1 by i.v. or oral routes causes dose-dependent inhibition of contractions elicited by repeated injections of oxytocin with ED50 = 3.5 mg/kg i.v. and 89 mg/kg p.o., respectively. Compound 1 significantly inhibits spontaneous uterine contractions in pregnant rats near term when administered intravenously or orally. We conclude that compound 1 is a potent, selective, and orally active nonpeptide oxytocin receptor antagonist, which is a suitable candidate for evaluation as a potential tocolytic agent for the management of preterm labor.