Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Cell ; 37(6): 749-51, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20347418

RESUMEN

In this issue of Molecular Cell, Yan et al. (2010) and Singh et al. (2010) identify an evolutionarily conserved FANCM-associated histone-fold MHF heterodimer (MHF1-MHF2) that promotes the remodeling of artificial replication forks and confers cellular resistance to DNA crosslinks and camptothecin.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Replicación del ADN , Anemia de Fanconi/metabolismo , Inestabilidad Genómica , ADN Helicasas/genética , Evolución Molecular , Anemia de Fanconi/genética , Humanos , Multimerización de Proteína , Transducción de Señal
2.
Mutat Res ; 751(2): 158-246, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22743550

RESUMEN

The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Transducción de Señal/genética , Animales , Ciclo Celular , Cromatina/química , Reparación del ADN por Unión de Extremidades , Células Eucariotas , Humanos , Radiación Ionizante , Reparación del ADN por Recombinación
3.
Biochem Biophys Res Commun ; 404(1): 206-10, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21111709

RESUMEN

The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA(-/-), FANCC(-/-), FANCA(-/-)C(-/-), FANCD2(-/-) and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical γH2AX-staining assay. Although the sensitivity of FANCA(-/-), FANCC(-/-) and FANCA(-/-)C(-/-) cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2(-/-) cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, γH2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex.


Asunto(s)
Daño del ADN , Reparación del ADN/genética , ADN Recombinante , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Animales , Proteína BRCA2/fisiología , Células CHO , Cricetinae , Cricetulus , Proteína del Grupo de Complementación A de la Anemia de Fanconi/fisiología , Proteína del Grupo de Complementación C de la Anemia de Fanconi/fisiología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/fisiología , Formaldehído/toxicidad , Histonas/metabolismo , Ratones
4.
Mutagenesis ; 25(2): 179-85, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19942596

RESUMEN

Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron-exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5' incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages approximately 8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER.


Asunto(s)
Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Mutación/genética , Animales , Células CHO , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Ensayo Cometa , Cricetinae , Cricetulus , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN-Formamidopirimidina Glicosilasa/metabolismo , Fenotipo , Pirrolidinas/farmacología , Quinolizinas/farmacología , Rayos Ultravioleta/efectos adversos
5.
Mutat Res ; 683(1-2): 91-7, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19896956

RESUMEN

DNA double-strand breaks (DSB) are generally considered the most critical lesion induced by ionizing radiation (IR) and may initiate carcinogenesis and other disease. Using an immunofluorescence assay to simultaneously detect nuclear foci of the phosphorylated forms of histone H2AX and ATM kinase at sites of DSBs, we examined the response of 25 apparently normal and 10 DNA repair-deficient (ATM, ATR, NBN, LIG1, LIG4, and FANCG) primary fibroblast strains irradiated with low doses of (137)Cs gamma-rays. Quiescent G(0)/G(1)-phase cultures were exposed to 5, 10, and 25 cGy and allowed to repair for 24h. The maximum level of IR-induced foci (0.15 foci per cGy, at 10 or 30 min) in the normal strains showed much less inter-individual variation (CV approximately 0.2) than the level of spontaneous foci, which ranged from 0.2-2.6 foci/cell (CV approximately 0.6; mean+/-SD of 1.00+/-0.57). Significantly slower focus formation post-irradiation was observed in seven normal strains, similar to most mutant strains examined. There was variation in repair efficiency measured by the fraction of IR-induced foci remaining 24h post-irradiation, curiously with the strains having slower focus formation showing more efficient repair after 25 cGy. Interestingly, the ranges of spontaneous and residual induced foci levels at 24h in the normal strains were as least as large as those observed for the repair-defective mutant strains. The inter-individual variation in DSB foci parameters observed in cells exposed to low doses of ionizing radiation in this small survey of apparently normal people suggests that hypomorphic genetic variants in genomic maintenance and/or DNA damage signaling and repair genes may contribute to differential susceptibility to cancer induced by environmental mutagens.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN , Fibroblastos/efectos de la radiación , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta en la Radiación , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Histonas/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Radiación Ionizante , Proteínas Supresoras de Tumor/metabolismo
6.
DNA Repair (Amst) ; 7(3): 515-22, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18182331

RESUMEN

We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells [H. Nagasawa, Y. Peng, P.F. Wilson, Y.C. Lio, D.J. Chen, J.S. Bedford, J.B. Little, Role of homologous recombination in the alpha-particle-induced bystander effect for sister chromatid exchanges and chromosomal aberrations, Radiat. Res. 164 (2005) 141-147]. In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23 to 0.33SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after alpha-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.


Asunto(s)
Partículas alfa , Efecto Espectador , Reparación del ADN , Recombinación Genética/efectos de la radiación , Intercambio de Cromátides Hermanas/efectos de la radiación , Animales , Proteína BRCA2/fisiología , Células CHO , Cricetinae , Cricetulus , Proteínas de Unión al ADN/fisiología , Relación Dosis-Respuesta en la Radiación , Recombinasa Rad51/fisiología , Fase S/fisiología
7.
Mutat Res ; 668(1-2): 54-72, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19622404

RESUMEN

The Fanconi anemia (FA) molecular network consists of 15 "FANC" proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint, (b) mediating enzymatic replication-fork breakage and crosslink unhooking, (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s), and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Anemia de Fanconi/genética , Animales , Células CHO , Inestabilidad Cromosómica , Cricetinae , Cricetulus , Daño del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Modelos Genéticos , Mutación , Estrés Oxidativo , Intercambio de Cromátides Hermanas
8.
Mutat Res ; 665(1-2): 61-6, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19427512

RESUMEN

Elaborate processes act at the DNA replication fork to minimize the generation of chromatid discontinuity when lesions are encountered. To prevent collapse of stalled replication forks, mutagenic translesion synthesis (TLS) polymerases are recruited temporarily to bypass DNA lesions. When a replication-associated (one-ended) double-strand break occurs, homologous recombination repair (HRR) can restore chromatid continuity in what has traditionally been regarded as an "error-free" process. Our previous mutagenesis studies show an important role for HRR in preventing deletions and rearrangements that would otherwise result from error-prone nonhomologous end joining (NHEJ) after fork breakage. An analogous, but distinct, role in minimizing mutations is attributed to the proteins defective in the cancer predisposition disease Fanconi anemia (FA). Cells from FA patients and model systems show an increased proportion of gene-disrupting deletions at the hprt locus as well as decreased mutation rates in the hprt assay, suggesting a role for the FANC proteins in promoting TLS, HRR, and possibly also NHEJ. It remains unclear whether HRR, like the FANC pathway, impacts the rate of base substitution mutagenesis. Therefore, we measured, in isogenic rad51d and fancg CHO mutants, mutation rates at the Na(+)/K(+)-ATPase alpha-subunit (ATP1A1) locus using ouabain resistance, which specifically detects base substitution mutations. Surprisingly, we found that the spontaneous mutation rate was reduced approximately 2.5-fold in rad51d knockout cells, an even greater extent than observed in fancg cells, when compared with parental and isogenic gene-complemented control lines. A approximately 2-fold reduction in induced mutations in rad51d cells was seen after treatment with the DNA alkylating agent ethylnitrosurea while a lesser reduction occurred in fancg cells. Should the model ATP1A1 locus be representative of the genome, we conclude that at least 50% of base substitution mutations in this mammalian system arise through error-prone polymerase(s) acting during HRR-mediated restart of broken replication forks.


Asunto(s)
Proteína del Grupo de Complementación G de la Anemia de Fanconi/metabolismo , Mutagénesis , Recombinasa Rad51/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Etilnitrosourea/toxicidad , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación G de la Anemia de Fanconi/genética , Prueba de Complementación Genética , Humanos , Mutación , Recombinasa Rad51/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinación Genética
9.
Mutat Res ; 664(1-2): 77-83, 2009 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-19428384

RESUMEN

According to a recent IARC Working Group report, alcohol consumption is causally related to an increased risk of cancer of the upper aerodigestive tract, liver, colorectum, and female breast [R. Baan, K. Straif, Y. Grosse, B. Secretan, F. El Ghissassi, V. Bouvard, A. Altieri, V. Cogliano, Carcinogenicity of alcoholic beverages, Lancet Oncol. 8 (2007) 292-293]. Several lines of evidence indicate that acetaldehyde (AA), the first product of alcohol metabolism, plays a very important role in alcohol-related carcinogenesis, particularly in the esophagus. We previously proposed a model for alcohol-related carcinogenesis in which AA, generated from alcohol metabolism, reacts in cells to generate DNA lesions that form interstrand crosslinks (ICLs) [J.A. Theruvathu, P. Jaruga, R.G. Nath, M. Dizdaroglu, P.J. Brooks, Polyamines stimulate the formation of mutagenic 1,N2-propanodeoxyguanosine adducts from acetaldehyde, Nucleic Acids Res. 33 (2005) 3513-3520]. Since the Fanconi anemia-breast cancer associated (FANC-BRCA) DNA damage response network plays a crucial role in protecting cells against ICLs, in the present work we tested this hypothesis by exposing cells to AA and monitoring activation of this network. We found that AA exposure results in a concentration-dependent increase in FANCD2 monoubiquitination, which is dependent upon the FANC core complex. AA also stimulated BRCA1 phosphorylation at Ser1524 and increased the level of gammaH2AX, with both modifications occurring in a dose-dependent manner. However, AA did not detectably increase the levels of hyperphosphorylated RPA34, a marker of single-stranded DNA exposure at replication forks. These results provide the initial description of the AA-DNA damage response, which is qualitatively similar to the cellular response to mitomycin C, a known DNA crosslinking agent. We discuss the mechanistic implications of these results, as well as their possible relationship to alcohol-related carcinogenesis in different human tissues.


Asunto(s)
Acetaldehído/toxicidad , Proteína BRCA1/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Histonas/metabolismo , Consumo de Bebidas Alcohólicas/efectos adversos , Línea Celular , Reactivos de Enlaces Cruzados/toxicidad , Daño del ADN/efectos de los fármacos , Etanol/toxicidad , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Femenino , Humanos , Técnicas In Vitro , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Masculino , Mitomicina/toxicidad , Neoplasias/etiología , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación/efectos de los fármacos , Ubiquitinación/efectos de los fármacos
10.
Nucleic Acids Res ; 35(11): 3733-40, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17517774

RESUMEN

Fanconi anemia (FA) is a chromosomal instability disorder in which DNA-damage processing defects are reported for translesion synthesis (TLS), non-homologous end joining (NHEJ) and homologous recombination (HR; both increased and decreased). To reconcile these diverse findings, we compared spontaneous mutagenesis in FA and HR mutants of hamster CHO cells. In the fancg mutant we find a reduced mutation rate accompanied by an increased proportion of deletions within the hprt gene. Moreover, in fancg cells gene amplification at the CAD and dhfr loci is elevated, another manifestation of inappropriate processing of damage during DNA replication. In contrast, the rad51d HR mutant has a greatly elevated rate of hprt mutations, >85% of which are deletions. Our analysis supports the concept that HR faithfully restores broken replication forks, whereas the FA pathway acts more globally to ensure chromosome stability by promoting efficient end joining of replication-derived breaks, as well as TLS and HR.


Asunto(s)
Proteína del Grupo de Complementación G de la Anemia de Fanconi/genética , Mutagénesis , Recombinasa Rad51/genética , Recombinación Genética , Animales , Células CHO , Cricetinae , Cricetulus , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Amplificación de Genes , Eliminación de Gen , Hipoxantina Fosforribosiltransferasa/genética , Modelos Genéticos , Eliminación de Secuencia
12.
Mol Cell Biol ; 25(1): 34-43, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15601828

RESUMEN

Recent studies show overlap between Fanconi anemia (FA) proteins and those involved in DNA repair mediated by homologous recombination (HR). However, the mechanism by which FA proteins affect HR is unclear. FA proteins (FancA/C/E/F/G/L) form a multiprotein complex, which is responsible for DNA damage-induced FancD2 monoubiquitination, a key event for cellular resistance to DNA damage. Here, we show that FANCD2-disrupted DT40 chicken B-cell line is defective in HR-mediated DNA double-strand break (DSB) repair, as well as gene conversion at the immunoglobulin light-chain locus, an event also mediated by HR. Gene conversions occurring in mutant cells were associated with decreased nontemplated mutations. In contrast to these defects, we also found increased spontaneous sister chromatid exchange (SCE) and intact Rad51 foci formation after DNA damage. Thus, we propose that FancD2 promotes a subpathway of HR that normally mediates gene conversion by a mechanism that avoids crossing over and hence SCEs.


Asunto(s)
Reparación del ADN , Inmunoglobulinas/metabolismo , Proteínas Nucleares/fisiología , Recombinación Genética , Animales , Proteínas Aviares , Secuencia de Bases , Western Blotting , Línea Celular , Pollos , Aberraciones Cromosómicas , Cisplatino/farmacología , Clonación Molecular , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Fase G2 , Inmunoglobulina M/química , Mitosis , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Recombinasa Rad51 , Fase S , Intercambio de Cromátides Hermanas , Factores de Tiempo , Transfección , Rayos Ultravioleta , Rayos X
13.
Nucleic Acids Res ; 34(9): 2833-43, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16717288

RESUMEN

In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Unión al ADN/química , Recombinación Genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Prueba de Complementación Genética , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular , Mutación , Recombinasa Rad51/metabolismo , Técnicas del Sistema de Dos Híbridos
14.
Nucleic Acids Res ; 34(5): 1358-68, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16522646

RESUMEN

Homologous recombinational repair (HRR) restores chromatid breaks arising during DNA replication and prevents chromosomal rearrangements that can occur from the misrepair of such breaks. In vertebrates, five Rad51 paralogs are identified that contribute in a nonessential but critical manner to HRR proficiency. We constructed and characterized a knockout of the paralog Rad51D in widely studied CHO cells. The rad51d mutant (clone 51D1) displays sensitivity to a diverse spectrum of induced DNA damage including gamma-rays, ultraviolet (UV)-C radiation, and methyl methanesulfonate (MMS), indicating the broad relevance of HRR to genotoxicity. Spontaneous chromatid breaks/gaps and isochromatid breaks are elevated 3- to 12-fold, but the chromosome number distribution remains unchanged. Most importantly, 51D1 cells exhibit a 12-fold-increased rate of hprt mutation, as well as 4- to 10-fold increased rates of gene amplification at the dhfr and CAD loci, respectively. Xrcc3 irs1SF cells from the same parental CHO line show similarly elevated mutagenesis at these three loci. Collectively, these results confirm the a priori expectation that HRR acts in an error-free manner to repress three classes of genetic alterations (chromosomal aberrations, loss of gene function and increased gene expression), all of which are associated with carcinogenesis.


Asunto(s)
Mutagénesis , Recombinasa Rad51/fisiología , Recombinación Genética , Animales , Células CHO , Supervivencia Celular , Aberraciones Cromosómicas , Cricetinae , Cricetulus , Daño del ADN , Rayos gamma , Amplificación de Genes , Marcación de Gen , Hipoxantina Fosforribosiltransferasa/genética , Recombinasa Rad51/análisis , Recombinasa Rad51/genética
15.
DNA Repair (Amst) ; 5(8): 875-84, 2006 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-16815103

RESUMEN

Fanconi anemia (FA) is a developmental and cancer predisposition disorder in which key, yet unknown, physiological events promoting chromosome stability are compromised. FA cells exhibit excess metaphase chromatid breaks and are universally hypersensitive to DNA interstrand crosslinking agents. Published mutagenesis data from single-gene mutation assays show both increased and decreased mutation frequencies in FA cells. In this review we discuss the data from the literature and from our isogenic fancg knockout hamster CHO cells, and interpret these data within the framework of a molecular model that accommodates these seemingly divergent observations. In FA cells, reduced rates of recovery of viable X-linked hypoxanthine phosphoribosyltransferase (hprt) mutants are characteristically observed for diverse mutagenic agents, but also in untreated cultures, indicating the relevance of the FA pathway for processing assorted DNA lesions. We ascribe these reductions to: (1) impaired mutagenic translesion synthesis within hprt during DNA replication and (2) lethality of mutant cells following replication fork breakage on the X chromosome, caused by unrepaired double-strand breaks or large deletions/translocations encompassing essential genes flanking hprt. These findings, along with studies showing increased spontaneous mutability of FA cells at two autosomal loci, support a model in which FA proteins promote both translesion synthesis at replication-blocking lesions and repair of broken replication forks by homologous recombination and DNA end joining. The essence of this model is that the FANC protein pathway serves to restrict the severity of mutational outcome by favoring base substitutions and small deletions over larger deletions and chromosomal rearrangements.


Asunto(s)
Inestabilidad Cromosómica/genética , Daño del ADN , Reparación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Modelos Genéticos , Mutagénesis/genética , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Mutagénesis/efectos de los fármacos , Mutágenos/toxicidad
16.
DNA Repair (Amst) ; 5(5): 629-40, 2006 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-16621732

RESUMEN

Fanconi anaemia is an inherited chromosomal instability disorder characterised by cellular sensitivity to DNA interstrand crosslinkers, bone-marrow failure and a high risk of cancer. Eleven FA genes have been identified, one of which, FANCD1, is the breast cancer susceptibility gene BRCA2. At least eight FA proteins form a nuclear core complex required for monoubiquitination of FANCD2. The BRCA2/FANCD1 protein is connected to the FA pathway by interactions with the FANCG and FANCD2 proteins, both of which co-localise with the RAD51 recombinase, which is regulated by BRCA2. These connections raise the question of whether any of the FANC proteins of the core complex might also participate in other complexes involved in homologous recombination repair. We therefore tested known FA proteins for direct interaction with RAD51 and its paralogs XRCC2 and XRCC3. FANCG was found to interact with XRCC3, and this interaction was disrupted by the FA-G patient derived mutation L71P. FANCG was co-immunoprecipitated with both XRCC3 and BRCA2 from extracts of human and hamster cells. The FANCG-XRCC3 and FANCG-BRCA2 interactions did not require the presence of other FA proteins from the core complex, suggesting that FANCG also participates in a DNA repair complex that is downstream and independent of FANCD2 monoubiquitination. Additionally, XRCC3 and BRCA2 proteins co-precipitate in both human and hamster cells and this interaction requires FANCG. The FANCG protein contains multiple tetratricopeptide repeat motifs (TPRs), which function as scaffolds to mediate protein-protein interactions. Mutation of one or more of these motifs disrupted all of the known interactions of FANCG. We propose that FANCG, in addition to stabilising the FA core complex, may have a role in building multiprotein complexes that facilitate homologous recombination repair.


Asunto(s)
Proteína BRCA2/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína del Grupo de Complementación G de la Anemia de Fanconi/metabolismo , Secuencias de Aminoácidos , Animales , Proteína BRCA2/genética , Células COS , Línea Celular , Chlorocebus aethiops , Cricetinae , Reparación del ADN , Proteínas de Unión al ADN/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación G de la Anemia de Fanconi/química , Proteína del Grupo de Complementación G de la Anemia de Fanconi/genética , Células HeLa , Humanos , Técnicas In Vitro , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinación Genética , Técnicas del Sistema de Dos Híbridos
17.
Environ Mol Mutagen ; 48(6): 491-500, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17603793

RESUMEN

Previous studies using rodent cells indicate that a deficiency in XRCC1 results in reduced single-strand break repair, increased sensitivity to DNA-damaging agents, and elevated levels of sister chromatid exchange (SCE). Epidemiological studies have suggested an association of certain human XRCC1 polymorphisms with genetic instability and cancer susceptibility. However, investigations on the molecular functions of XRCC1 in human cells are limited. To determine the contributions of this nonenzymatic scaffold protein, we suppressed XRCC1 levels in several human cell lines using small interfering RNA (siRNA) technology. We report that XRCC1 down-regulation in HeLa cells leads to a concomitant decrease in the DNA ligase 3 protein level and an impaired nick ligation capacity. In addition, depletion of XRCC1 resulted in a significantly increased sensitivity to the alkylating agent methyl methanesulfonate and the thymidine base analog 5-hydroxymethyl-2'-deoxyuridine, a slightly increased sensitivity to ethyl methanesulfonate and 1,3-bis(2-chloroethyl)-1-nitrosourea, and no change in the response to camptothecin. We also discovered that a 70-80% reduction in XRCC1 protein leads to an elevated level of SCE in both HeLa cells and normal human fibroblasts, but does not affect chromosome aberrations in the diploid fibroblasts. Last, XRCC1 siRNA transfection led to an approximately 40% decrease in the survival of BRCA2-deficient cells, supporting a model whereby the accumulation of unrepaired SSBs leads to the accumulation of cytotoxic DNA double strand breaks following replication fork collapse in cells defective in homologous recombination.


Asunto(s)
Proteína BRCA2/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Mutágenos/toxicidad , Mutación/genética , Intercambio de Cromátides Hermanas/efectos de los fármacos , Animales , Células CHO , Extractos Celulares , Supervivencia Celular/efectos de los fármacos , Inestabilidad Cromosómica/efectos de los fármacos , Cricetinae , Cricetulus , Células HeLa , Humanos , Metilmetanosulfonato/toxicidad , Pruebas de Micronúcleos , Neoplasias/patología , ARN Interferente Pequeño/metabolismo , Transfección , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
18.
Mol Cell Biol ; 23(16): 5706-15, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12897142

RESUMEN

Little is known about the quantitative contributions of nonhomologous end joining (NHEJ) and homologous recombination (HR) to DNA double-strand break (DSB) repair in different cell cycle phases after physiologically relevant doses of ionizing radiation. Using immunofluorescence detection of gamma-H2AX nuclear foci as a novel approach for monitoring the repair of DSBs, we show here that NHEJ-defective hamster cells (CHO mutant V3 cells) have strongly reduced repair in all cell cycle phases after 1 Gy of irradiation. In contrast, HR-defective CHO irs1SF cells have a minor repair defect in G(1), greater impairment in S, and a substantial defect in late S/G(2). Furthermore, the radiosensitivity of irs1SF cells is slight in G(1) but dramatically higher in late S/G(2), while V3 cells show high sensitivity throughout the cell cycle. These findings show that NHEJ is important in all cell cycle phases, while HR is particularly important in late S/G(2), where both pathways contribute to repair and radioresistance. In contrast to DSBs produced by ionizing radiation, DSBs produced by the replication inhibitor aphidicolin are repaired entirely by HR. irs1SF, but not V3, cells show hypersensitivity to aphidicolin treatment. These data provide the first evaluation of the cell cycle-specific contributions of NHEJ and HR to the repair of radiation-induced versus replication-associated DSBs.


Asunto(s)
Daño del ADN , Reparación del ADN , Recombinación Genética , Animales , Antimetabolitos Antineoplásicos/farmacología , Bromodesoxiuridina/farmacología , Células CHO , Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Cricetinae , Relación Dosis-Respuesta en la Radiación , Citometría de Flujo , Fase G1 , Fase G2 , Microscopía Fluorescente , Fenotipo , Fase S , Factores de Tiempo
19.
Mol Cell Biol ; 23(15): 5421-30, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12861027

RESUMEN

The rare hereditary disorder Fanconi anemia (FA) is characterized by progressive bone marrow failure, congenital skeletal abnormality, elevated susceptibility to cancer, and cellular hypersensitivity to DNA cross-linking chemicals and sometimes other DNA-damaging agents. Molecular cloning identified six causative genes (FANCA, -C, -D2, -E, -F, and -G) encoding a multiprotein complex whose precise biochemical function remains elusive. Recent studies implicate this complex in DNA damage responses that are linked to the breast cancer susceptibility proteins BRCA1 and BRCA2. Mutations in BRCA2, which participates in homologous recombination (HR), are the underlying cause in some FA patients. To elucidate the roles of FA genes in HR, we disrupted the FANCG/XRCC9 locus in the chicken B-cell line DT40. FANCG-deficient DT40 cells resemble mammalian fancg mutants in that they are sensitive to killing by cisplatin and mitomycin C (MMC) and exhibit increased MMC and radiation-induced chromosome breakage. We find that the repair of I-SceI-induced chromosomal double-strand breaks (DSBs) by HR is decreased approximately 9-fold in fancg cells compared with the parental and FANCG-complemented cells. In addition, the efficiency of gene targeting is mildly decreased in FANCG-deficient cells, but depends on the specific locus. We conclude that FANCG is required for efficient HR-mediated repair of at least some types of DSBs.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/fisiología , ADN/efectos de la radiación , Recombinación Genética , Secuencia de Aminoácidos , Animales , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Western Blotting , División Celular , Línea Celular , Núcleo Celular/metabolismo , Pollos , Aberraciones Cromosómicas , Cisplatino/farmacología , Clonación Molecular , Cricetinae , Reactivos de Enlaces Cruzados/farmacología , ADN/efectos de los fármacos , Reparación del ADN , ADN Complementario/metabolismo , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Resistencia a Medicamentos , Proteína del Grupo de Complementación G de la Anemia de Fanconi , Citometría de Flujo , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/metabolismo , Ratones , Mitomicina/farmacología , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Tiempo , Rayos X
20.
Mutat Res ; 616(1-2): 11-23, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17157333

RESUMEN

Sister-chromatid exchange (SCE) is the process whereby, during DNA replication, two sister chromatids break and rejoin with one another, physically exchanging regions of the parental strands in the duplicated chromosomes. This process is considered to be conservative and error-free, since no information is generally altered during reciprocal interchange by homologous recombination. Upon the advent of non-radiolabel detection methods for SCE, such events were used as genetic indicators for potential genotoxins/mutagens in laboratory toxicology tests, since, as we now know, most forms of DNA damage induce chromatid exchange upon replication fork collapse. Much of our present understanding of the mechanisms of SCE stems from studies involving nonhuman vertebrate cell lines that are defective in processes of DNA repair and/or recombination. In this article, we present a historical perspective of studies spearheaded by Dr. Anthony V. Carrano and colleagues focusing on SCE as a genetic outcome, and the role of the single-strand break DNA repair protein XRCC1 in suppressing SCE. A more general overview of the cellular processes and key protein "effectors" that regulate the manifestation of SCE is also presented.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Intercambio de Cromátides Hermanas , Animales , Células CHO , Cromosomas Humanos Par 19/genética , Cricetinae , Cricetulus , Humanos , Modelos Genéticos , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA