RESUMEN
INTRODUCTION: Causal epidemiology for regulatory risk analysis seeks to evaluate how removing or reducing exposures would change disease occurrence rates. We define interventional probability of causation (IPoC) as the change in probability of a disease (or other harm) occurring over a lifetime or other specified time interval that would be caused by a specified change in exposure, as predicted by a fully specified causal model. We define the closely related concept of causal assigned share (CAS) as the predicted fraction of disease risk that would be removed or prevented by a specified reduction in exposure, holding other variables fixed. Traditional approaches used to evaluate the preventable risk implications of epidemiological associations, including population attributable fraction (PAF) and the Bradford Hill considerations, cannot reveal whether removing a risk factor would reduce disease incidence. We argue that modern formal causal models coupled with causal artificial intelligence (CAI) and realistically partial and imperfect knowledge of underlying disease mechanisms, show great promise for determining and quantifying IPoC and CAS for exposures and diseases of practical interest. METHODS: We briefly review key CAI concepts and terms and then apply them to define IPoC and CAS. We present steps to quantify IPoC using a fully specified causal Bayesian network (BN) model. Useful bounds for quantitative IPoC and CAS calculations are derived for a two-stage clonal expansion (TSCE) model for carcinogenesis and illustrated by applying them to benzene and formaldehyde based on available epidemiological and partial mechanistic evidence. RESULTS: Causal BN models for benzene and risk of acute myeloid leukemia (AML) incorporating mechanistic, toxicological and epidemiological findings show that prolonged high-intensity exposure to benzene can increase risk of AML (IPoC of up to 7e-5, CAS of up to 54%). By contrast, no causal pathway leading from formaldehyde exposure to increased risk of AML was identified, consistent with much previous mechanistic, toxicological and epidemiological evidence; therefore, the IPoC and CAS for formaldehyde-induced AML are likely to be zero. CONCLUSION: We conclude that the IPoC approach can differentiate between likely and unlikely causal factors and can provide useful upper bounds for IPoC and CAS for some exposures and diseases of practical importance. For causal factors, IPoC can help to estimate the quantitative impacts on health risks of reducing exposures, even in situations where mechanistic evidence is realistically incomplete and individual-level exposure-response parameters are uncertain. This illustrates the strength that can be gained for causal inference by using causal models to generate testable hypotheses and then obtaining toxicological data to test the hypotheses implied by the models-and, where necessary, refine the models. This virtuous cycle provides additional insight into causal determinations that may not be available from weight-of-evidence considerations alone.
Asunto(s)
Benceno , Formaldehído , Leucemia Mieloide Aguda , Humanos , Benceno/toxicidad , Leucemia Mieloide Aguda/epidemiología , Leucemia Mieloide Aguda/inducido químicamente , Formaldehído/toxicidad , Causalidad , Probabilidad , Medición de Riesgo , Exposición a Riesgos Ambientales , Factores de RiesgoRESUMEN
The demands of a sustainable chemical industry are a driving force for the development of heterogeneous catalytic platforms exhibiting facile catalyst recovery, recycling, and resilience to diverse reaction conditions. Homogeneous-to-heterogeneous catalyst transitions can be realized through the integration of efficient homogeneous catalysts within porous matrices. Herein, we offer a versatile approach to understanding how guest distribution and evolution impact the catalytic performance of heterogeneous host-guest catalytic platforms by implementing the resonance energy transfer (RET) concept using fluorescent model systems mimicking the steric constraints of targeted catalysts. Using the RET-based methodology, we mapped condition-dependent guest (re)distribution within a porous support on the example of modular matrices such as metal-organic frameworks (MOFs). Furthermore, we correlate RET results performed on the model systems with the catalytic performance of two MOF-encapsulated catalysts used to promote CO2 hydrogenation and ring-closing metathesis. Guests are incorporated using aperture-opening encapsulation, and catalyst redistribution is not observed under practical reaction conditions, showcasing a pathway to advance catalyst recyclability in the case of host-guest platforms. These studies represent the first generalizable approach for mapping the guest distribution in heterogeneous host-guest catalytic systems, providing a foundation for predicting and tailoring the performance of catalysts integrated into various porous supports.
RESUMEN
Epidemiologic research on the role of fibers and other elongate mineral particles (EMP) and human diseases including cancers has generated a large body of literature over the last decades: nevertheless, there remain some questions for which the scientific community appears unable to reach consensus. Reasons for genuine differences in opinion include (i) ways in which exposures have been classified; (ii) methodological limitations of the available studies, (iii) criteria for the interpretation of study results, including potential underlying biological mechanisms, and (iv) methodology for integrating the evidence. Various approaches have been proposed in recent years to address these issues, which will be illustrated using examples from asbestos, talc, taconite, synthetic mineral fibers and silicon carbide, with emphasis on potential carcinogenic effects. Potential solutions include improved exposure and outcome assessment - including use of biomarkers and other molecular approaches, consideration of potential confounding and other sources of bias, implementation of guidelines for study quality assessment and evidence evaluation and integration.
Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Minerales/toxicidad , Neoplasias/inducido químicamente , Neoplasias/epidemiología , Material Particulado/toxicidad , Amianto/toxicidad , Carcinógenos/toxicidad , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Mesotelioma/inducido químicamente , Mesotelioma/epidemiología , Exposición Profesional , Medición de RiesgoRESUMEN
Evidence triangulation may help identify the impact of study design elements on study findings and to tease out biased results when evaluating potential causal relationships; however, methods for triangulating epidemiologic evidence are evolving and have not been standardized. Building upon key principles of epidemiologic evidence triangulation and risk of bias assessment, and responding to the National Academies of Sciences, Engineering, and Medicine (NASEM) call for applied triangulation examples, the objective of this manuscript is to propose a triangulation framework and to apply it as an illustrative example to epidemiologic studies examining the possible relationship between occupational formaldehyde exposure and risk of myeloid leukemias (ML) including acute (AML) and chronic (CML) types. A nine-component triangulation framework for epidemiological evidence was developed incorporating study quality and ROB guidance from various federal health agencies (i.e., US EPA TSCA and NTP OHAT). Several components of the triangulation framework also drew from widely used epidemiological analytic tools such as stratified meta-analysis and sensitivity analysis. Regarding the applied example, fourteen studies were identified and assessed using the following primary study quality domains to explore potential key sources of bias: 1) study design and analysis; 2) study participation; 3) exposure assessment; 4) outcome assessment; and 5) potential confounding. Across studies, methodological limitations possibly contributing to biased results were observed within most domains. Interestingly, results from one study - often providing the largest and least-precise relative risk estimates, likely reflecting study biases, deviated from most primary study findings indicating no such associations. Triangulation of epidemiological evidence appears to be helpful in exploring inconsistent results for the identification of study results possibly reflecting various biases. Nonetheless, triangulation methodologies require additional development and application to real-world examples to enhance objectivity and reproducibility.
RESUMEN
Talc is a hydrous magnesium sheet silicate used in cosmetic powders, ceramics, paints, rubber, and many other products. We conducted a systematic review of the potential carcinogenicity of genitally applied talc in humans. Our systematic review methods adhere to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and incorporated aspects from the US Institute of Medicine (IOM, now the National Academy of Medicine) and several US EPA frameworks for systematic reviews, evaluating and integrating the epidemiological, animal, and mechanistic literature on talc and cancer. We conducted a comprehensive literature search. Detailed data abstraction and study quality evaluation, adapting the Toxic Substances Control Act (TSCA) framework, were central to our analysis. The literature search and selection process identified 40 primary studies that assessed exposure to talc and female reproductive cancer risks in humans (n = 36) and animals (n = 4). The results of our evaluation emphasize the importance of considering biological plausibility and study quality in systematic review. Integrating all streams of evidence according to the IOM framework yielded classifications of suggestive evidence of no association between perineal application of talcum powders and risk of ovarian cancer at human-relevant exposure levels. We also concluded that there is suggestive evidence of no association between genital talc application and endometrial cancer, and insufficient evidence to determine whether a causal association exists between genital talc application and cervical cancer based on a smaller but largely null body of literature.
RESUMEN
Inhaled particles that are poorly soluble or insoluble and of low toxicity ("poorly soluble low toxicity" or "PSLT" particles), can accumulate in the lung and at lung overload levels induce lung cancers in rats. The question of whether PSLT particles increase lung cancer risk in humans is complicated by large differences between rats and humans and the relatively large particle doses administered in animal studies even when compared with heavy human occupational exposures. We review the findings of epidemiological studies on occupational exposure to each of three different PSLT particles (carbon black, talc and taconite). The epidemiological evidence indicates that at even very high occupational exposure levels at which non-malignant respiratory diseases including pneumoconiosis and even talcosis are observed, lung cancer risks appear not to be elevated. Although positive human cancer risks might be predicted based on extrapolation from overload doses in rats to relevant exposures in humans, the epidemiological "reality check" based on the three examples indicates that these PSLT particles are unlikely to increase lung cancer risk in humans even at high occupational levels of exposure. Therefore, we propose that careful evaluation of the epidemiological evidence can serve as a "reality check" for human risk assessment and help balance the risk evaluation process.
Asunto(s)
Neoplasias Pulmonares , Exposición Profesional , Animales , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Exposición Profesional/efectos adversos , Ratas , Medición de Riesgo , Hollín/toxicidad , Talco/toxicidadRESUMEN
Ethylene oxide is a highly reactive chemical primarily used as an intermediate in chemical production and as a sterilant of medical equipment and food products; it also is produced endogenously as a result of physiological processes. We conducted a systematic review of the potential carcinogenicity of inhaled ethylene oxide in humans using methods that adhere to PRIMSA guidelines and that incorporate aspects from the Institute of Medicine (IOM) (now the National Academy of Medicine) as well as several US Environmental Protection Agency (EPA) frameworks for systematic reviews. After a comprehensive literature search and selection process, study quality was evaluated following a method adapted from the EPA Toxic Substances Control Act (TSCA) framework. The literature screening and selection process identified 24 primary studies in animals or humans and more than 50 mechanistic studies. Integrating epidemiological, animal, and mechanistic literature on ethylene oxide and cancer according to the IOM framework yielded classifications of suggestive evidence of no association between ethylene oxide and stomach cancer, breast cancer and lymphohematopoietic malignancies at human relevant exposures. However, we acknowledge that there is additional uncertainty in the classification for lymphohematopoietic malignancies owing to a paucity of evidence for specific types of these tumors, each of which is a distinct disease entity of possibly unique etiology.
Asunto(s)
Neoplasias de la Mama , Carcinógenos , Animales , Femenino , Humanos , Carcinógenos/toxicidad , Óxido de Etileno/toxicidad , Estados Unidos , United States Environmental Protection AgencyRESUMEN
We conducted a systematic review to assess the potential pulmonary carcinogenicity of inhaled talc in humans. Our systematic review methods adhere to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and incorporated aspects from the US Institute of Medicine (IOM) and several United States (US) Environmental Protection Agency (EPA) frameworks for systematic reviews. A comprehensive literature search was conducted. Detailed data abstraction and study quality evaluation, adapting the US Toxic Substances Control Act (TSCA) framework, were central to our analysis. The literature search and selection process identified 23 primary studies that assessed exposure to talc and pulmonary cancer risks in humans (n = 19) and animals (n = 3). Integrating all streams of evidence according to the IOM framework yielded classifications of suggestive evidence of no association between inhaled talc and lung cancer and pleural mesothelioma at human-relevant exposure levels.
Asunto(s)
Talco , Animales , Estados Unidos , Humanos , Talco/toxicidadRESUMEN
The International Agency for Research on Cancer (IARC) and the United States Environmental Protection Agency (USEPA) classified ethylene oxide (EtO) as a known human carcinogen. Critically, both noted that the epidemiological evidence based on lymphoid and breast cancers was "limited," but that the evidence in animal studies was "sufficient" and "extensive" (respectively) and that EtO is genotoxic. The USEPA derived one of the highest published inhalation unit risk (IUR) values (3 × 10-3 per [µg/m3 EtO]), based on results from 2 epidemiological studies. We performed focused reviews of the epidemiological and toxicological evidence on the carcinogenicity of EtO and considered the USEPA's reliance on a genotoxic mode of action to establish EtO's carcinogenicity and to determine likely dose-response patterns. Higher quality epidemiological studies demonstrated no increased risk of breast cancers or lymphohematopoietic malignancies (LHM). Similarly, toxicological studies and studies of early effect biomarkers in animals and humans provided no strong indication that EtO causes LHM or mammary cancers. Ultimately, animal data are inadequate to define the actual dose-response shape or predict tumor response at very low doses with any confidence. We conclude that the IARC and USEPA classification of EtO as a known human carcinogen overstates the underlying evidence and that the IUR derived by USEPA grossly overestimates risk.
RESUMEN
Transcription errors occur in all living cells; however, it is unknown how these errors affect cellular health. To answer this question, we monitor yeast cells that are genetically engineered to display error-prone transcription. We discover that these cells suffer from a profound loss in proteostasis, which sensitizes them to the expression of genes that are associated with protein-folding diseases in humans; thus, transcription errors represent a new molecular mechanism by which cells can acquire disease phenotypes. We further find that the error rate of transcription increases as cells age, suggesting that transcription errors affect proteostasis particularly in aging cells. Accordingly, transcription errors accelerate the aggregation of a peptide that is implicated in Alzheimer's disease, and shorten the lifespan of cells. These experiments reveal a previously unappreciated role for transcriptional fidelity in cellular health and aging.
Asunto(s)
Senescencia Celular/genética , Chaperonas Moleculares/metabolismo , Agregación Patológica de Proteínas/metabolismo , Estrés Fisiológico , Transcripción Genética , Línea Celular , Supervivencia Celular/genética , Proteínas de Choque Térmico/metabolismo , Mutación , ARN Polimerasa II/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
The intent of this study was threefold: (1) to validate true intrusion of molars in adults, (2) to test the stability of miniplates as anchorage for intruding posterior teeth in the maxilla, and (3) to record the skeletal and dental changes of open-bite closure. Four adult patients who had anterior open-bite malocclusions were selected to undergo posterior intrusion with miniplate anchorage to close the open bite; all had true intrusion of the maxillary molars. Mean molar intrusion was 1.99 mm (range, 1.45-3.32 mm). No movement of miniplates occurred at any time during their use or before intentional clinical removal. Open-bite closure was achieved for all 4 patients. Mean closure of incisors was 3.62 mm (range, 3.0-4.5 mm) as the mandibular plane closed 2.62 degrees (range, 1.5 degrees -4.5 degrees ), and the occlusal plane decreased 2.25 degrees (range, 1.0 degrees -3.5 degrees ). Anterior facial heights decreased as the mandible closed and B-point rotated anteriorly and upward.