Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Syst Biol ; 6: 416, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20865009

RESUMEN

Circadian clocks generate 24-h rhythms that are entrained by the day/night cycle. Clock circuits include several light inputs and interlocked feedback loops, with complex dynamics. Multiple biological components can contribute to each part of the circuit in higher organisms. Mechanistic models with morning, evening and central feedback loops have provided a heuristic framework for the clock in plants, but were based on transcriptional control. Here, we model observed, post-transcriptional and post-translational regulation and constrain many parameter values based on experimental data. The model's feedback circuit is revised and now includes PSEUDO-RESPONSE REGULATOR 7 (PRR7) and ZEITLUPE. The revised model matches data in varying environments and mutants, and gains robustness to parameter variation. Our results suggest that the activation of important morning-expressed genes follows their release from a night inhibitor (NI). Experiments inspired by the new model support the predicted NI function and show that the PRR5 gene contributes to the NI. The multiple PRR genes of Arabidopsis uncouple events in the late night from light-driven responses in the day, increasing the flexibility of rhythmic regulation.


Asunto(s)
Arabidopsis/genética , Relojes Circadianos , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Genes de Plantas , Modelos Biológicos , Modelos Genéticos , Mutación , Fotoperiodo , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Procesamiento Postranscripcional del ARN , Factores de Tiempo , Transcripción Genética
2.
Mol Syst Biol ; 6: 424, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-21045818

RESUMEN

The circadian clock controls 24-h rhythms in many biological processes, allowing appropriate timing of biological rhythms relative to dawn and dusk. Known clock circuits include multiple, interlocked feedback loops. Theory suggested that multiple loops contribute the flexibility for molecular rhythms to track multiple phases of the external cycle. Clear dawn- and dusk-tracking rhythms illustrate the flexibility of timing in Ipomoea nil. Molecular clock components in Arabidopsis thaliana showed complex, photoperiod-dependent regulation, which was analysed by comparison with three contrasting models. A simple, quantitative measure, Dusk Sensitivity, was introduced to compare the behaviour of clock models with varying loop complexity. Evening-expressed clock genes showed photoperiod-dependent dusk sensitivity, as predicted by the three-loop model, whereas the one- and two-loop models tracked dawn and dusk, respectively. Output genes for starch degradation achieved dusk-tracking expression through light regulation, rather than a dusk-tracking rhythm. Model analysis predicted which biochemical processes could be manipulated to extend dusk tracking. Our results reveal how an operating principle of biological regulators applies specifically to the plant circadian clock.


Asunto(s)
Relojes Circadianos/fisiología , Redes Reguladoras de Genes/fisiología , Biología de Sistemas/métodos , Arabidopsis/fisiología , Proteínas CLOCK/genética , Proteínas CLOCK/fisiología , Relojes Circadianos/genética , Genes Reporteros , Ipomoea nil/fisiología , Modelos Biológicos , Fotoperiodo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA