Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Stroke Cerebrovasc Dis ; 32(3): 106985, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640721

RESUMEN

OBJECTIVES: Cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) may be one of the main drivers of secondary brain injury after aneurysmal subarachnoid hemorrhage (aSAH). Haptoglobin scavenging of CSF-Hb has been shown to mitigate cerebrovascular disruption. Using digital subtraction angiography (DSA) and blood oxygenation-level dependent cerebrovascular reactivity imaging (BOLD-CVR) the aim was to assess the acute toxic effect of CSF-Hb on cerebral blood flow and autoregulation, as well as to test the protective effects of haptoglobin. METHODS: DSA imaging was performed in eight anesthetized and ventilated sheep (mean weight: 80.4 kg) at baseline, 15, 30, 45 and 60 minutes after infusion of hemoglobin (Hb) or co-infusion with haptoglobin (Hb:Haptoglobin) into the left lateral ventricle. Additionally, 10 ventilated sheep (mean weight: 79.8 kg) underwent BOLD-CVR imaging to assess the cerebrovascular reserve capacity. RESULTS: DSA imaging did not show a difference in mean transit time or cerebral blood flow. Whole-brain BOLD-CVR compared to baseline decreased more in the Hb group after 15 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.01 vs -0.01 ± 0.02) and remained diminished compared to Hb:Haptoglobin group after 30 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.01 vs 0.0 ± 0.01), 45 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.01 vs 0.01 ± 0.02) and 60 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.02 vs 0.01 ± 0.01). CONCLUSION: It is demonstrated that CSF-Hb toxicity leads to rapid cerebrovascular reactivity impairment, which is blunted by haptoglobin co-infusion. BOLD-CVR may therefore be further evaluated as a monitoring strategy for CSF-Hb toxicity after aSAH.


Asunto(s)
Haptoglobinas , Hemorragia Subaracnoidea , Animales , Ovinos , Encéfalo/diagnóstico por imagen , Hemorragia Subaracnoidea/diagnóstico por imagen , Diagnóstico por Imagen , Circulación Cerebrovascular/fisiología , Hemoglobinas , Imagen por Resonancia Magnética/métodos
2.
J Stroke Cerebrovasc Dis ; 32(11): 107357, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37734180

RESUMEN

OBJECTIVES: Cerebrospinal fluid hemoglobin has been positioned as a potential biomarker and drug target for aneurysmal subarachnoid hemorrhage-related secondary brain injury (SAH-SBI). The maximum amount of hemoglobin, which may be released into the cerebrospinal fluid, is defined by the initial subarachnoid hematoma volume (ISHV). In patients without external ventricular or lumbar drain, there remains an unmet clinical need to predict the risk for SAH-SBI. The aim of this study was to explore automated segmentation of ISHV as a potential surrogate for cerebrospinal fluid hemoglobin to predict SAH-SBI. METHODS: This study is based on a retrospective analysis of imaging and clinical data from 220 consecutive patients with aneurysmal subarachnoid hemorrhage collected over a five-year period. 127 annotated initial non-contrast CT scans were used to train and test a convolutional neural network to automatically segment the ISHV in the remaining cohort. Performance was reported in terms of Dice score and intraclass correlation. We characterized the associations between ISHV and baseline cohort characteristics, SAH-SBI, ventriculoperitoneal shunt dependence, functional outcome, and survival. Established clinical (World Federation of Neurosurgical Societies, Hunt & Hess) and radiological (modified Fisher, Barrow Neurological Institute) scores served as references. RESULTS: A strong volume agreement (0.73 Dice, range 0.43 - 0.93) and intraclass correlation (0.89, 95% CI, 0.81-0.94) were shown. While ISHV was not associated with the use of antithrombotics or cardiovascular risk factors, there was strong evidence for an association with a lower Glasgow Coma Scale at hospital admission. Aneurysm size and location were not associated with ISHV, but the presence of intracerebral or intraventricular hemorrhage were independently associated with higher ISHV. Despite strong evidence for a positive association between ISHV and SAH-SBI, the discriminatory ability of ISHV for SAH-SBI was insufficient. The discriminatory ability of ISHV was, however, higher regarding ventriculoperitoneal shunt dependence and functional outcome at three-months follow-up. Multivariate survival analysis provided strong evidence for an independent negative association between survival probability and both ISHV and intraventricular hemorrhage. CONCLUSIONS: The proposed algorithm demonstrates strong performance in volumetric segmentation of the ISHV on the admission CT. While the discriminatory ability of ISHV for SAH-SBI was similar to established clinical and radiological scores, it showed a high discriminatory ability for ventriculoperitoneal shunt dependence and functional outcome at three-months follow-up.

3.
J Neuroinflammation ; 19(1): 290, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482445

RESUMEN

BACKGROUND: The functional neurological outcome of patients with intracerebral hemorrhage (ICH) strongly relates to the degree of secondary brain injury (ICH-SBI) evolving within days after the initial bleeding. Different mechanisms including the incitement of inflammatory pathways, dysfunction of the blood-brain barrier (BBB), activation of resident microglia, and an influx of blood-borne immune cells, have been hypothesized to contribute to ICH-SBI. Yet, the spatiotemporal interplay of specific inflammatory processes within different brain compartments has not been sufficiently characterized, limiting potential therapeutic interventions to prevent and treat ICH-SBI. METHODS: We used a whole-blood injection model in mice, to systematically characterized the spatial and temporal dynamics of inflammatory processes after ICH using 7-Tesla magnetic resonance imaging (MRI), spatial RNA sequencing (spRNAseq), functional BBB assessment, and immunofluorescence average-intensity-mapping. RESULTS: We identified a pronounced early response of the choroid plexus (CP) peaking at 12-24 h that was characterized by inflammatory cytokine expression, epithelial and endothelial expression of leukocyte adhesion molecules, and the accumulation of leukocytes. In contrast, we observed a delayed secondary reaction pattern at the injection site (striatum) peaking at 96 h, defined by gene expression corresponding to perilesional leukocyte infiltration and correlating to the delayed signal alteration seen on MRI. Pathway analysis revealed a dependence of the early inflammatory reaction in the CP on toll-like receptor 4 (TLR4) signaling via myeloid differentiation factor 88 (MyD88). TLR4 and MyD88 knockout mice corroborated this observation, lacking the early upregulation of adhesion molecules and leukocyte infiltration within the CP 24 h after whole-blood injection. CONCLUSIONS: We report a biphasic brain reaction pattern after ICH with a MyD88-TLR4-dependent early inflammatory response of the CP, preceding inflammation, edema and leukocyte infiltration at the lesion site. Pharmacological targeting of the early CP activation might harbor the potential to modulate the development of ICH-SBI.


Asunto(s)
Edema Encefálico , Animales , Ratones , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/etiología , Factor 88 de Diferenciación Mieloide/genética , Plexo Coroideo/diagnóstico por imagen , Receptor Toll-Like 4/genética , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/diagnóstico por imagen
4.
BMC Neurol ; 22(1): 267, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35850705

RESUMEN

INTRODUCTION: Preclinical studies provided a strong rationale for a pathophysiological link between cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) and secondary brain injury after subarachnoid hemorrhage (SAH-SBI). In a single-center prospective observational clinical study, external ventricular drain (EVD) based CSF-Hb proved to be a promising biomarker to monitor for SAH-SBI. The primary objective of the HeMoVal study is to prospectively validate the association between EVD based CSF-Hb and SAH-SBI during the first 14 days post-SAH. Secondary objectives include the assessment of the discrimination ability of EVD based CSF-Hb for SAH-SBI and the definition of a clinically relevant range of EVD based CSF-Hb toxicity. In addition, lumbar drain (LD) based CSF-Hb will be assessed for its association with and discrimination ability for SAH-SBI. METHODS: HeMoVal is a prospective international multicenter observational cohort study. Adult patients admitted with aneurysmal subarachnoid hemorrhage (aSAH) are eligible. While all patients with aSAH are included, we target a sample size of 250 patients with EVD within the first 14 day after aSAH. Epidemiologic and disease-specific baseline measures are assessed at the time of study inclusion. In patients with EVD or LD, each day during the first 14 days post-SAH, 2 ml of CSF will be sampled in the morning, followed by assessment of the patients for SAH-SBI, co-interventions, and complications in the afternoon. After 3 months, a clinical follow-up will be performed. For statistical analysis, the cohort will be stratified into an EVD, LD and full cohort. The primary analysis will quantify the strength of association between EVD based CSF-Hb and SAH-SBI in the EVD cohort based on a generalized additive model. Secondary analyses include the strength of association between LD based CSF-Hb and SAH-SBI in the LD cohort based on a generalized additive model, as well as the discrimination ability of CSF-Hb for SAH-SBI based on receiver operating characteristic (ROC) analyses. DISCUSSION: We hypothesize that this study will validate the value of CSF-Hb as a biomarker to monitor for SAH-SBI. In addition, the results of this study will provide the potential base to define an intervention threshold for future studies targeting CSF-Hb toxicity after aSAH. STUDY REGISTRATION: ClinicalTrials.gov Identifier NCT04998370 . Date of registration: August 10, 2021.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Adulto , Biomarcadores , Lesiones Encefálicas/complicaciones , Estudios de Cohortes , Hemoglobina Falciforme , Hemoglobinas , Humanos , Estudios Multicéntricos como Asunto , Estudios Observacionales como Asunto , Estudios Prospectivos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/diagnóstico
5.
Int J Comput Assist Radiol Surg ; 19(1): 1-9, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37249749

RESUMEN

PURPOSE: Accuracy of image-guided liver surgery is challenged by deformation of the liver during the procedure. This study aims at improving navigation accuracy by using intraoperative deep learning segmentation and nonrigid registration of hepatic vasculature from ultrasound (US) images to compensate for changes in liver position and deformation. METHODS: This was a single-center prospective study of patients with liver metastases from any origin. Electromagnetic tracking was used to follow US and liver movement. A preoperative 3D model of the liver, including liver lesions, and hepatic and portal vasculature, was registered with the intraoperative organ position. Hepatic vasculature was segmented using a reduced 3D U-Net and registered to preoperative imaging after initial alignment followed by nonrigid registration. Accuracy was assessed as Euclidean distance between the tumor center imaged in the intraoperative US and the registered preoperative image. RESULTS: Median target registration error (TRE) after initial alignment was 11.6 mm in 25 procedures and improved to 6.9 mm after nonrigid registration (p = 0.0076). The number of TREs above 10 mm halved from 16 to 8 after nonrigid registration. In 9 cases, registration was performed twice after failure of the first attempt. The first registration cycle was completed in median 11 min (8:00-18:45 min) and a second in 5 min (2:30-10:20 min). CONCLUSION: This novel registration workflow using automatic vascular detection and nonrigid registration allows to accurately localize liver lesions. Further automation in the workflow is required in initial alignment and classification accuracy.


Asunto(s)
Aprendizaje Profundo , Neoplasias Hepáticas , Humanos , Movimientos de los Órganos , Estudios Prospectivos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Imagenología Tridimensional/métodos
6.
Transl Stroke Res ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652234

RESUMEN

Secondary brain injury (SBI) occurs with a lag of several days post-bleeding in patients with aneurysmal subarachnoid hemorrhage (aSAH) and is a strong contributor to mortality and long-term morbidity. aSAH-SBI coincides with cell-free hemoglobin (Hb) release into the cerebrospinal fluid. This temporal association and convincing pathophysiological concepts suggest that CSF-Hb could be a targetable trigger of SBI. However, sparse experimental evidence for Hb's neurotoxicity in vivo defines a significant research gap for clinical translation. We modeled the CSF-Hb exposure observed in aSAH patients in conscious sheep, which allowed us to assess neurological functions in a gyrencephalic species. Twelve animals were randomly assigned for 3-day bi-daily intracerebroventricular (ICV) injections of either Hb or Hb combined with the high-affinity Hb scavenger protein haptoglobin (Hb-Hp, CSL888). Repeated CSF sampling confirmed clinically relevant CSF-Hb concentrations. This prolonged CSF-Hb exposure over 3 days resulted in disturbed movement activity, reduced food intake, and impaired observational neuroscores. The Hb-induced neurotoxic effects were significantly attenuated when Hb was administered with equimolar haptoglobin. Preterminal magnetic resonance imaging (MRI) showed no CSF-Hb-specific structural brain alterations. In both groups, histology demonstrated an inflammatory response and revealed enhanced perivascular histiocytic infiltrates in the Hb-Hp group, indicative of adaptive mechanisms. Heme exposure in CSF and iron deposition in the brain were comparable, suggesting comparable clearance efficiency of Hb and Hb-haptoglobin complexes from the intracranial compartment. We identified a neurological phenotype of CSF-Hb toxicity in conscious sheep, which is rather due to neurovascular dysfunction than structural brain injury. Haptoglobin was effective at attenuating CSF-Hb-induced neurological deterioration, supporting its therapeutic potential.

7.
Front Neuroanat ; 17: 1260186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074449

RESUMEN

G-ratio is crucial for understanding the nervous system's health and function as it measures the relative myelin thickness around an axon. However, manual measurement is biased and variable, emphasizing the need for an automated and standardized technique. Although deep learning holds promise, current implementations lack clinical relevance and generalizability. This study aimed to develop an automated pipeline for selecting nerve fibers and calculating relevant g-ratio using quality parameters in optical microscopy. Histological sections from the sciatic nerves of 16 female mice were prepared and stained with either p-phenylenediamine (PPD) or toluidine blue (TB). A custom UNet model was trained on a mix of both types of staining to segment the sections based on 7,694 manually delineated nerve fibers. Post-processing excluded non-relevant nerves. Axon diameter, myelin thickness, and g-ratio were computed from the segmentation results and its reliability was assessed using the intraclass correlation coefficient (ICC). Validation was performed on adjacent cuts of the same nerve. Then, morphometrical analyses of both staining techniques were performed. High agreement with the ground truth was shown by the model, with dice scores of 0.86 (axon) and 0.80 (myelin) and pixel-wise accuracy of 0.98 (axon) and 0.94 (myelin). Good inter-device reliability was observed with ICC at 0.87 (g-ratio) and 0.83 (myelin thickness), and an excellent ICC of 0.99 for axon diameter. Although axon diameter significantly differed from the ground truth (p = 0.006), g-ratio (p = 0.098) and myelin thickness (p = 0.877) showed no significant differences. No statistical differences in morphological parameters (g-ratio, myelin thickness, and axon diameter) were found in adjacent cuts of the same nerve (ANOVA p-values: 0.34, 0.34, and 0.39, respectively). Comparing all animals, staining techniques yielded significant differences in mean g-ratio (PPD: 0.48 ± 0.04, TB: 0.50 ± 0.04), myelin thickness (PPD: 0.83 ± 0.28 µm, TB: 0.60 ± 0.20 µm), and axon diameter (PPD: 1.80 ± 0.63 µm, TB: 1.78 ± 0.63 µm). The proposed pipeline automatically selects relevant nerve fibers for g-ratio calculation in optical microscopy. This provides a reliable measurement method and serves as a potential pre-selection approach for large datasets in the context of healthy tissue. It remains to be demonstrated whether this method is applicable to measure g-ratio related with neurological disorders by comparing healthy and pathological tissue. Additionally, our findings emphasize the need for careful interpretation of inter-staining morphological parameters.

8.
PLoS One ; 17(10): e0275891, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36227883

RESUMEN

In recent years, insect husbandry has seen an increased interest in order to supply in the production of raw materials, food, or as biological/environmental control. Unfortunately, large insect rearings are susceptible to pathogens, pests and parasitoids which can spread rapidly due to the confined nature of a rearing system. Thus, it is of interest to monitor the spread of such manifestations and the overall population size quickly and efficiently. Medical imaging techniques could be used for this purpose, as large volumes can be scanned non-invasively. Due to its 3D acquisition nature, computed tomography seems to be the most suitable for this task. This study presents an automated, computed tomography-based, counting method for bee rearings that performs comparable to identifying all Osmia cornuta cocoons manually. The proposed methodology achieves this in an average of 10 seconds per sample, compared to 90 minutes per sample for the manual count over a total of 12 samples collected around lake Zurich in 2020. Such an automated bee population evaluation tool is efficient and valuable in combating environmental influences on bee, and potentially other insect, rearings.


Asunto(s)
Insectos , Tomografía , Animales , Abejas , Densidad de Población
9.
Int J Comput Assist Radiol Surg ; 17(10): 1765-1773, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35622201

RESUMEN

PURPOSE: Despite extensive preoperative imaging, intraoperative localization of liver lesions after systemic treatment can be challenging. Therefore, an image-guided navigation setup is explored that links preoperative diagnostic scans and 3D models to intraoperative ultrasound (US), enabling overlay of detailed diagnostic images on intraoperative US. Aim of this study is to assess the workflow and accuracy of such a navigation system which compensates for liver motion. METHODS: Electromagnetic (EM) tracking was used for organ tracking and movement of the transducer. After laparotomy, a sensor was attached to the liver surface while the EM-tracked US transducer enabled image acquisition and landmark digitization. Landmarks surrounding the lesion were selected during patient-specific preoperative 3D planning and identified for registration during surgery. Endpoints were accuracy and additional times of the investigative steps. Accuracy was computed at the center of the target lesion. RESULTS: In total, 22 navigated procedures were performed. Navigation provided useful visualization of preoperative 3D models and their overlay on US imaging. Landmark-based registration resulted in a mean fiducial registration error of 10.3 ± 4.3 mm, and a mean target registration error of 8.5 ± 4.2 mm. Navigation was available after an average of 12.7 min. CONCLUSION: We developed a navigation method combining ultrasound with active liver tracking for organ motion compensation, with an accuracy below 10 mm. Fixation of the liver sensor near the target lesion compensates for local movement and contributes to improved reliability during navigation. This represents an important step forward in providing surgical navigation throughout the procedure. TRIAL REGISTRATION: This study is registered in the Netherlands Trial Register (number NL7951).


Asunto(s)
Cirugía Asistida por Computador , Fenómenos Electromagnéticos , Humanos , Imagenología Tridimensional/métodos , Hígado/diagnóstico por imagen , Hígado/cirugía , Reproducibilidad de los Resultados , Cirugía Asistida por Computador/métodos , Ultrasonografía
10.
Med Phys ; 48(10): 5694-5701, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34224161

RESUMEN

PURPOSE: Registration of pre- and intraoperative images is a crucial step of surgical liver navigation, where rigid registration of vessel centerlines is currently commonly used. When using 3D ultrasound (US), accuracy during navigation might be influenced by the size of the intraoperative US volume, yet the relationship between registration accuracy and US volume size is understudied. In this study, we specify an optimal 3D US volume size for registration using varying volumes of liver vasculature. While previous studies measured accuracy at registered fiducials, in this work, accuracy is determined at the target lesion which is clinically the most relevant structure. METHODS: Three-dimensional US volumes were acquired in 14 patients after laparotomy and liver mobilization. Manual segmentation of vasculature and centerline extraction was performed. Intraoperative and preoperative vasculature centerlines were registered with coherent point drift, using different sub-volumes (sphere with radius r = 30, 40, …, 120 mm). Accuracy was measured by fiducial registration error (FRE) between vessel centerlines and target registration error (TRE) at the center of the target lesion. RESULTS: The lowest FRE for vessel registration was reached with r = 50 mm (6.5 ± 2.5 mm), the highest with r = 120 mm (7.1 ± 2.1 mm). Clinical accuracy at the target lesion, resulted most accurate (TRE = 8.8 ± 5.0 mm) in sub-volumes with a radius of 50 mm. Smaller US sub-volumes resulted in lower average TREs when compared to larger US sub-volumes (Pearson's correlation coefficient R = 0.91, p < 0.001). CONCLUSION: Our results indicate that there is a linear correlation between US volume size and registration accuracy at the tumor. Volumes with radii of 50 mm around the target lesion yield higher accuracy (p < 0.05) (Trial number IRBd18032, 11 September 2018).


Asunto(s)
Imagenología Tridimensional , Cirugía Asistida por Computador , Algoritmos , Humanos , Hígado/diagnóstico por imagen , Hígado/cirugía , Ultrasonografía
11.
J Cereb Blood Flow Metab ; 41(11): 3000-3015, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34102922

RESUMEN

Secondary brain injury after aneurysmal subarachnoid hemorrhage (SAH-SBI) contributes to poor outcomes in patients after rupture of an intracranial aneurysm. The lack of diagnostic biomarkers and novel drug targets represent an unmet need. The aim of this study was to investigate the clinical and pathophysiological association between cerebrospinal fluid hemoglobin (CSF-Hb) and SAH-SBI. In a cohort of 47 patients, we collected daily CSF-samples within 14 days after aneurysm rupture. There was very strong evidence for a positive association between spectrophotometrically determined CSF-Hb and SAH-SBI. The accuracy of CSF-Hb to monitor for SAH-SBI markedly exceeded that of established methods (AUC: 0.89 [0.85-0.92]). Temporal proteome analysis revealed erythrolysis accompanied by an adaptive macrophage response as the two dominant biological processes in the CSF-space after aneurysm rupture. Ex-vivo experiments on the vasoconstrictive and oxidative potential of Hb revealed critical inflection points overlapping CSF-Hb thresholds in patients with SAH-SBI. Selective depletion and in-solution neutralization by haptoglobin or hemopexin efficiently attenuated the vasoconstrictive and lipid peroxidation activities of CSF-Hb. Collectively, the clinical association between high CSF-Hb levels and SAH-SBI, the underlying pathophysiological rationale, and the favorable effects of haptoglobin and hemopexin in ex-vivo experiments position CSF-Hb as a highly attractive biomarker and potential drug target.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Isquemia Encefálica/etiología , Hemoglobinas/líquido cefalorraquídeo , Hemorragia Subaracnoidea/complicaciones , Vasoespasmo Intracraneal/etiología , Adulto , Anciano , Líquido Cefalorraquídeo/química , Femenino , Humanos , Masculino , Persona de Mediana Edad
12.
Sci Rep ; 9(1): 17709, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776423

RESUMEN

Dual-energy CT (DECT) was introduced to address the inability of conventional single-energy computed tomography (SECT) to distinguish materials with similar absorbances but different elemental compositions. However, material decomposition algorithms based purely on the physics of the underlying attenuation process have several limitations, leading to low signal-to-noise ratio (SNR) in the derived material-specific images. To overcome these, we trained a convolutional neural network (CNN) to develop a framework to reconstruct non-contrast SECT images from DECT scans. We show that the traditional physics-based decomposition algorithms do not bring to bear the full information content of the image data. A CNN that leverages the underlying physics of the DECT image generation process as well as the anatomic information gleaned via training with actual images can generate higher fidelity processed DECT images.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA