RESUMEN
Small molecules that interfere with microtubule dynamics, such as Taxol and the Vinca alkaloids, are widely used in cell biology research and as clinical anticancer drugs. However, their activity cannot be restricted to specific target cells, which also causes severe side effects in chemotherapy. Here, we introduce the photostatins, inhibitors that can be switched on and off in vivo by visible light, to optically control microtubule dynamics. Photostatins modulate microtubule dynamics with a subsecond response time and control mitosis in living organisms with single-cell spatial precision. In longer-term applications in cell culture, photostatins are up to 250 times more cytotoxic when switched on with blue light than when kept in the dark. Therefore, photostatins are both valuable tools for cell biology, and are promising as a new class of precision chemotherapeutics whose toxicity may be spatiotemporally constrained using light.
Asunto(s)
Antimitóticos/química , Muerte Celular , Microtúbulos/efectos de los fármacos , Mitosis , Estilbenos/química , Animales , Antimitóticos/toxicidad , Línea Celular Tumoral , Citoesqueleto/química , Humanos , Luz , Ratones , Polimerizacion , Estilbenos/toxicidadRESUMEN
We report piperazine-fused six-membered-cyclic disulfides as redox substrates that unlock best-in-class bioreduction probes for live cell biology, since their self-immolation after reduction is unprecedentedly rapid. We develop scalable, diastereomerically pure, six-step syntheses that access four key cis- and trans-piperazine-fused cyclic dichalcogenides without chromatography. Fluorogenic redox probes using the disulfide piperazines are activated >100-fold faster than the prior art monoamines, allowing us to deconvolute reduction and cyclization rates during activation. The cis- and trans-fused diastereomers have remarkably different reductant specificities, which we trace back to piperazine boat/chair conformation effects: the cis-fused disulfide C-DiThia is activated only by strong vicinal dithiol reductants, but the trans-disulfide T-DiThia is activated even by moderate concentrations of monothiols such as GSH. Thus, in cellular applications, cis-disulfide probes selectively report on the reductive activity of the powerful thioredoxin proteins, while trans-disulfides are rapidly but promiscuously reactive. Finally, we showcase late-stage diversifications of the piperazine-disulfides, promising their broad applicability as redox-cleavable cores for probes and prodrugs that interface powerfully with cellular thiol/disulfide redox biology, for solid phase synthesis and purification, and for stimulus-responsive linkers in bifunctional reagents and antibody-drug conjugates - in addition to their dithiols' potential as high-performance reducing agents.
Asunto(s)
Disulfuros , Compuestos de Sulfhidrilo , Disulfuros/química , Compuestos de Sulfhidrilo/química , Reactivos de Enlaces Cruzados , Piperazina , Tiorredoxinas/metabolismo , Oxidación-Reducción , BiologíaRESUMEN
Selectively labeling cells with damaged membranes is needed not only for identifying dead cells in culture, but also for imaging membrane barrier dysfunction in pathologies in vivo. Most membrane permeability stains are permanently colored or fluorescent dyes that need washing to remove their non-uptaken extracellular background and reach good image contrast. Others are DNA-binding environment-dependent fluorophores, which lack design modularity, have potential toxicity, and can only detect permeabilization of cell volumes containing a nucleus (i.e., cannot delineate damaged volumes in vivo nor image non-nucleated cell types or compartments). Here, we develop modular fluorogenic probes that reveal the whole cytosolic volume of damaged cells, with near-zero background fluorescence so that no washing is needed. We identify a specific disulfonated fluorogenic probe type that only enters cells with damaged membranes, then is enzymatically activated and marks them. The esterase probe MDG1 is a reliable tool to reveal live cells that have been permeabilized by biological, biochemical, or physical membrane damage, and it can be used in multicolor microscopy. We confirm the modularity of this approach by also adapting it for improved hydrolytic stability, as the redox probe MDG2. We conclude by showing the unique performance of MDG probes in revealing axonal membrane damage (which DNA fluorogens cannot achieve) and in discriminating damage on a cell-by-cell basis in embryos in vivo. The MDG design thus provides powerful modular tools for wash-free in vivo imaging of membrane damage, and indicates how designs may be adapted for selective delivery of drug cargoes to these damaged cells: offering an outlook from selective diagnosis toward therapy of membrane-compromised cells in disease.
RESUMEN
Retinoic acid receptor-related orphan receptor γ (RORγ) is a nuclear hormone receptor with multiple biological functions in circadian clock regulation, inflammation, and immunity. Its cyclic temporal role in circadian rhythms, and cell-specific activity in the immune system, make it an intriguing target for spatially and temporally localised pharmacology. To create tools that can study RORγ biology with appropriate spatiotemporal resolution, we designed light-dependent inverse RORγ agonists by building azobenzene photoswitches into ligand consensus structures. Optimizations gave photoswitchable RORγ inhibitors combining a large degree of potency photocontrol, with remarkable on-target potency, and excellent selectivity over related off-target receptors. This still rare combination of performance features distinguishes them as high quality photopharmaceutical probes, which can now serve as high precision tools to study the spatial and dynamic intricacies of RORγ action in signaling and in inflammatory disorders.
RESUMEN
The cytoskeleton is essential for spatial and temporal organisation of a wide range of cellular and tissue-level processes, such as proliferation, signalling, cargo transport, migration, morphogenesis, and neuronal development. Cytoskeleton research aims to study these processes by imaging, or by locally manipulating, the dynamics and organisation of cytoskeletal proteins with high spatiotemporal resolution: which matches the capabilities of optical methods. To date, no photoresponsive microtubule-stabilising tool has united all the features needed for a practical high-precision reagent: a low potency and biochemically stable non-illuminated state; then an efficient, rapid, and clean photoresponse that generates a high potency illuminated state; plus good solubility at suitable working concentrations; and efficient synthetic access. We now present CouEpo, a photocaged epothilone microtubule-stabilising reagent that combines these needs. Its potency increases approximately 100-fold upon irradiation by violet/blue light to reach low-nanomolar values, allowing efficient photocontrol of microtubule dynamics in live cells, and even the generation of cellular asymmetries in microtubule architecture and cell dynamics. CouEpo is thus a high-performance tool compound that can support high-precision research into many microtubule-associated processes, from biophysics to transport, cell motility, and neuronal physiology.
Asunto(s)
Epotilonas , Microtúbulos , Epotilonas/química , Epotilonas/farmacología , Epotilonas/síntesis química , Microtúbulos/química , Microtúbulos/metabolismo , Humanos , Citoesqueleto/metabolismo , Procesos Fotoquímicos , LuzRESUMEN
Optoacoustic (or photoacoustic) imaging promises micron-resolution noninvasive bioimaging with much deeper penetration (>cm) than fluorescence. However, optoacoustic imaging of enzyme activity would require loud, photostable, NIR-absorbing molecular contrast agents, which remain unknown. Most organic molecular contrast agents are repurposed fluorophores, with severe shortcomings of photoinstability or phototoxicity under optoacoustic imaging, as consequences of their slow S1âS0 electronic relaxation. We now report that known fluorophores can be rationally modified to reach ultrafast S1âS0 rates, without much extra molecular complexity, simply by merging them with molecular switches. Here, we merge azobenzene switches with cyanine dyes to give ultrafast relaxation (<10â ps, >100-fold faster). Without even adapting instrument settings, these azohemicyanines display outstanding improvements in signal longevity (>1000-fold increase of photostability) and signal loudness (>3-fold even at time zero). We show why this simple but unexplored design strategy can still offer stronger performance in the future, and can also increase the spatial resolution and the quantitative linearity of photoacoustic response over extended longitudinal imaging. By bringing the world of molecular switches and rotors to bear on problems facing optoacoustic agents, this practical strategy will help to unleash the full potential of optoacoustic imaging in fundamental studies and translational uses.
Asunto(s)
Compuestos Azo , Carbocianinas , Colorantes Fluorescentes , Técnicas Fotoacústicas , Compuestos Azo/química , Técnicas Fotoacústicas/métodos , Colorantes Fluorescentes/química , Carbocianinas/química , Humanos , Rayos Infrarrojos , Estructura Molecular , Imagen ÓpticaRESUMEN
Photoswitchable reagents are powerful tools for high-precision studies in cell biology. When these reagents are globally administered yet locally photoactivated in two-dimensional (2D) cell cultures, they can exert micron- and millisecond-scale biological control. This gives them great potential for use in biologically more relevant three-dimensional (3D) models and in vivo, particularly for studying systems with inherent spatiotemporal complexity, such as the cytoskeleton. However, due to a combination of photoswitch isomerization under typical imaging conditions, metabolic liabilities, and insufficient water solubility at effective concentrations, the in vivo potential of photoswitchable reagents addressing cytosolic protein targets remains largely unrealized. Here, we optimized the potency and solubility of metabolically stable, druglike colchicinoid microtubule inhibitors based on the styrylbenzothiazole (SBT) scaffold that are nonresponsive to typical fluorescent protein imaging wavelengths and so enable multichannel imaging studies. We applied these reagents both to 3D organoids and tissue explants and to classic model organisms (zebrafish, clawed frog) in one- and two-protein imaging experiments, in which spatiotemporally localized illuminations allowed them to photocontrol microtubule dynamics, network architecture, and microtubule-dependent processes in vivo with cellular precision and second-level resolution. These nanomolar, in vivo capable photoswitchable reagents should open up new dimensions for high-precision cytoskeleton research in cargo transport, cell motility, cell division, and development. More broadly, their design can also inspire similarly capable optical reagents for a range of cytosolic protein targets, thus bringing in vivo photopharmacology one step closer to general realization.
Asunto(s)
Microtúbulos , Pez Cebra , Animales , Citoesqueleto , Indicadores y Reactivos/metabolismo , Microtúbulos/metabolismo , MitosisRESUMEN
We develop the first method for catalytic, exhaustive ortho-alkoxylation of azobenzene photoswitches. Alkoxylation is known to improve the photoswitch properties that control azobenzenes' success in chemical biology or materials sciences, e.g., better completeness of both E â Z and Z â E photoisomerizations and >100 nm red shift of photoresponse. Our method enables straightforward late-stage diversification of photoswitches with interesting functional handles. We showcase four applications: using it to rationally tune lipophilicity, prepare isotopic tracers for metabolism studies, install full water solubility without ionic charges, and efficiently access previously difficult mixed-substituent photoswitches. We also identified a previously unexplored mixed-substituent tetra-ortho family, difluoro-dialkoxy-azobenzenes, whose photoresponse can outperform previous 'gold standard' tetrafluoro-, dichloro-difluoro-, and tetrachloro-azobenzenes in significant ways. We thus expect that both the scaffolds we showcase and the method we develop will impact broadly on photochemistry and photopharmacology.
Asunto(s)
Compuestos Azo , Compuestos Azo/química , Catálisis , FotoquímicaRESUMEN
Novel photoswitches offering features complementary to the well-established azobenzenes are increasingly driving high-precision research in cellular photopharmacology. Styrylthiazolium (StyTz) and styrylbenzothiazolium (StyBtz) are cellularly untested E/Z-isomerisation photoswitches which are nearly isosteric to azobenzenes, but have distinct properties: including ca. 60 nm red-shifted π â π* absorption, self-reporting fluorescence, Z â E relaxation on typical biological timescales, and decent solubility (positive charge). We tested StyTz and StyBtz for their potential as photopharmaceutical scaffolds, by applying them to photocontrol microtubule dynamics. They light-specifically disrupt microtubule network architecture and block cell proliferation: yet, testing lead compound StyBtz2 for its molecular mechanism of action showed that it did not inhibit microtubule dynamics. Using its self-reporting fluorescence, we tracked its localisation in live cells and observed accumulation of E-StyBtz2 into mitochondria; during prolonged illumination, it was released into the cytosol, and blebbing and cell death were observed. We interpret this as light-dependent rupturing of mitochondria on acute timescales. We conclude that StyTz/StyBtz can be interesting photopharmaceutical scaffolds for addressing mitochondrial, rather than cytosolic, targets.
Asunto(s)
Compuestos Azo , Mitocondrias , Compuestos Azo/farmacología , Muerte Celular , Colorantes , Mitocondrias/metabolismoRESUMEN
Optical methods to modulate microtubule dynamics show promise for reaching the micron- and millisecond-scale resolution needed to decrypt the roles of the cytoskeleton in biology. However, optical microtubule stabilisers are under-developed. We introduce "STEpos" as GFP-orthogonal, light-responsive epothilone-based microtubule stabilisers. They use a novel styrylthiazole photoswitch in a design to modulate hydrogen-bonding and steric effects that control epothilone potency. STEpos photocontrol microtubule dynamics and cell division with micron- and second-scale spatiotemporal precision. They substantially improve potency, solubility, and ease-of-use compared to previous optical microtubule stabilisers, and the structure-photoswitching-activity relationship insights in this work will guide future optimisations. The STEpo reagents can contribute greatly to high-precision research in cytoskeleton biophysics, cargo transport, cell motility, cell division, development, and neuroscience.
Asunto(s)
Citoesqueleto/química , Epotilonas/química , Proteínas Fluorescentes Verdes/química , Microtúbulos/química , Estirenos/química , Tiazoles/química , Modelos Moleculares , Estructura Molecular , Procesos FotoquímicosRESUMEN
The natural product jasplakinolide is widely used to stabilize F-actin. Based on extensive structure-activity relationship studies, we have developed a new generation of photoswitchable jasplakinolides that feature rationally designed red-shifted azobenzene photoswitches. Our lead compound, nOJ, can be activated with longer wavelengths in the visible range (e.g. 440-475â nm) and rapidly returns to its inactive state through thermal relaxation. nOJ enables the reversible control of F-actin dynamics, as shown through live-cell imaging, cell migration, and cell proliferation assays. Short, local irradiation with blue light resulted in highly localized and reversible actin aggregation with subcellular precision. Our optical tool can be useful in diverse fields to study actin dynamics with excellent spatiotemporal resolution.
Asunto(s)
Actinas , Depsipéptidos , Citoesqueleto de Actina , Depsipéptidos/farmacología , Movimiento CelularRESUMEN
Photoswitchable reagents can be powerful tools for high-precision biological control. TRPC5 is a Ca2+ -permeable cation channel with distinct tissue-specific roles, from synaptic function to hormone regulation. Reagents giving spatiotemporally-resolved control over TRPC5 activity may be key to understanding and harnessing its biology. Here we develop the first photoswitchable TRPC5-modulator, BTDAzo, to address this goal. BTDAzo can photocontrol TRPC5 currents in cell culture, as well as controlling endogenous TRPC5-based neuronal Ca2+ responses in mouse brain slices. BTDAzos are also the first reported azo-benzothiadiazines, an accessible and conveniently derivatised azoheteroarene with strong two-colour photoswitching. BTDAzo's ability to control TRPC5 across relevant channel biology settings makes it suitable for a range of dynamically reversible photoswitching studies in TRP channel biology, with the aim to decipher the various biological roles of this centrally important ion channel.
Asunto(s)
Neuronas , Canales Catiónicos TRPC , Animales , Calcio/metabolismo , Ratones , Neuronas/metabolismoRESUMEN
Specialized cellular networks of oxidoreductases coordinate the dithiol/disulfide-exchange reactions that control metabolism, protein regulation, and redox homeostasis. For probes to be selective for redox enzymes and effector proteins (nM to µM concentrations), they must also be able to resist non-specific triggering by the ca. 50 mM background of non-catalytic cellular monothiols. However, no such selective reduction-sensing systems have yet been established. Here, we used rational structural design to independently vary thermodynamic and kinetic aspects of disulfide stability, creating a series of unusual disulfide reduction trigger units designed for stability to monothiols. We integrated the motifs into modular series of fluorogenic probes that release and activate an arbitrary chemical cargo upon reduction, and compared their performance to that of the literature-known disulfides. The probes were comprehensively screened for biological stability and selectivity against a range of redox effector proteins and enzymes. This design process delivered the first disulfide probes with excellent stability to monothiols yet high selectivity for the key redox-active protein effector, thioredoxin. We anticipate that further applications of these novel disulfide triggers will deliver unique probes targeting cellular thioredoxins. We also anticipate that further tuning following this design paradigm will enable redox probes for other important dithiol-manifold redox proteins, that will be useful in revealing the hitherto hidden dynamics of endogenous cellular redox systems.
RESUMEN
We report the first cellular application of the emerging near-quantitative photoswitch pyrrole hemithioindigo, by rationally designing photopharmaceutical PHTub inhibitors of the cytoskeletal protein tubulin. PHTubs allow simultaneous visible-light imaging and photoswitching in live cells, delivering cell-precise photomodulation of microtubule dynamics, and photocontrol over cell cycle progression and cell death. This is the first acute use of a hemithioindigo photopharmaceutical for high-spatiotemporal-resolution biological control in live cells. It additionally demonstrates the utility of near-quantitative photoswitches, by enabling a dark-active design to overcome residual background activity during cellular photopatterning. This work opens up new horizons for high-precision microtubule research using PHTubs and shows the cellular applicability of pyrrole hemithioindigo as a valuable scaffold for photocontrol of a range of other biological targets.
Asunto(s)
Antimitóticos/metabolismo , Carmin de Índigo/análogos & derivados , Microtúbulos/metabolismo , Pirroles/metabolismo , Análisis de la Célula Individual , Antimitóticos/química , Ciclo Celular , Muerte Celular , Línea Celular Tumoral , Células HeLa , Humanos , Carmin de Índigo/química , Carmin de Índigo/metabolismo , Microtúbulos/química , Estructura Molecular , Procesos Fotoquímicos , Pirroles/químicaRESUMEN
Cell-permeable photoswitchable small molecules, termed optojasps, are introduced to optically control the dynamics of the actin cytoskeleton and cellular functions that depend on it. These light-dependent effectors were designed from the F-actin-stabilizing marine depsipeptide jasplakinolide by functionalizing them with azobenzene photoswitches. As demonstrated, optojasps can be employed to control cell viability, cell motility, and cytoskeletal signaling with the high spatial and temporal resolution that light affords. Optojasps can be expected to find applications in diverse areas of cell biological research. They may also provide a template for photopharmacology targeting the ubiquitous actin cytoskeleton with precision control in the micrometer range.
Asunto(s)
Actinas/química , Compuestos Azo/química , Depsipéptidos/química , Bibliotecas de Moléculas Pequeñas/química , Compuestos Azo/síntesis química , Conformación Molecular , Procesos Fotoquímicos , Bibliotecas de Moléculas Pequeñas/síntesis químicaRESUMEN
Background: Hemithioindigo is a promising molecular photoswitch that has only recently been applied as a photoswitchable pharmacophore for control over bioactivity in cellulo. Uniquely, in contrast to other photoswitches that have been applied to biology, the pseudosymmetric hemithioindigo scaffold has allowed the creation of both dark-active and lit-active photopharmaceuticals for the same binding site by a priori design. However, the potency of previous hemithioindigo photopharmaceuticals has not been optimal for their translation to other biological models. Results: Inspired by the structure of tubulin-inhibiting indanones, we created hemithioindigo-based indanone-like tubulin inhibitors (HITubs) and optimised their cellular potency as antimitotic photopharmaceuticals. These HITubs feature reliable and robust visible-light photoswitching and high fatigue resistance. The use of the hemithioindigo scaffold also permitted us to employ a para-hydroxyhemistilbene motif, a structural feature which is denied to most azobenzenes due to the negligibly short lifetimes of their metastable Z-isomers, which proved crucial to enhancing the potency and photoswitchability. The HITubs were ten times more potent than previously reported hemithioindigo photopharmaceutical antimitotics in a series of cell-free and cellular assays, and allowed robust photocontrol over tubulin polymerisation, microtubule (MT) network structure, cell cycle, and cell survival. Conclusions: HITubs represent a powerful addition to the growing toolbox of photopharmaceutical reagents for MT cytoskeleton research. Additionally, as the hemithioindigo scaffold allows photoswitchable bioactivity for substituent patterns inaccessible to the majority of current photopharmaceuticals, wider adoption of the hemithioindigo scaffold may significantly expand the scope of cellular and in vivo targets addressable by photopharmacology.
RESUMEN
Druglike small molecules with photoswitchable bioactivity-photopharmaceuticals-allow biologists to perform studies with exquisitely precise and reversible, spatial and temporal control over critical biological systems inaccessible to genetic manipulation. The photoresponsive pharmacophores disclosed have been almost exclusively azobenzenes, which has limited the structural and substituent scope of photopharmacology. More detrimentally, for azobenzene reagents, it is not researchers' needs for adapted experimental tools, but rather protein binding site sterics, that typically force whether the trans (dark) or cis (lit) isomer is the more bioactive. We now present the rational design of HOTubs, the first hemithioindigo-based pharmacophores enabling photoswitchable control over endogenous biological activity in cellulo. HOTubs optically control microtubule depolymerisation and cell death in unmodified mammalian cells. Notably, we show how the asymmetry of hemithioindigos allows a priori design of either Z- or E- (dark- or lit)-toxic antimitotics, whereas the corresponding azobenzenes are exclusively lit-toxic. We thus demonstrate that hemithioindigos enable an important expansion of the substituent and design scope of photopharmacological interventions for biological systems.
Asunto(s)
Carmin de Índigo/análogos & derivados , Moduladores de Tubulina/farmacología , Diseño de Fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HeLa , Humanos , Carmin de Índigo/síntesis química , Carmin de Índigo/farmacología , Carmin de Índigo/efectos de la radiación , Luz , Estereoisomerismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/efectos de la radiaciónRESUMEN
α-Synuclein is a presynaptic protein the function of which has yet to be identified, but its neuronal content increases in patients of synucleinopathies including Parkinson's disease. Chronic overexpression of α-synuclein reportedly expresses various phenotypes of synaptic dysfunction, but the primary target of its toxicity has not been determined. To investigate this, we acutely loaded human recombinant α-synuclein or its pathological mutants in their monomeric forms into the calyces of Held presynaptic terminals in slices from auditorily mature and immature rats of either sex. Membrane capacitance measurements revealed significant and specific inhibitory effects of WT monomeric α-synuclein on vesicle endocytosis throughout development. However, the α-synuclein A53T mutant affected vesicle endocytosis only at immature calyces, whereas the A30P mutant had no effect throughout. The endocytic impairment by WT α-synuclein was rescued by intraterminal coloading of the microtubule (MT) polymerization blocker nocodazole. Furthermore, it was reversibly rescued by presynaptically loaded photostatin-1, a photoswitcheable inhibitor of MT polymerization, in a light-wavelength-dependent manner. In contrast, endocytic inhibition by the A53T mutant at immature calyces was not rescued by nocodazole. Functionally, presynaptically loaded WT α-synuclein had no effect on basal synaptic transmission evoked at a low frequency, but significantly attenuated exocytosis and impaired the fidelity of neurotransmission during prolonged high-frequency stimulation. We conclude that monomeric WT α-synuclein primarily inhibits vesicle endocytosis via MT overassembly, thereby impairing high-frequency neurotransmission.SIGNIFICANCE STATEMENT Abnormal α-synuclein abundance is associated with synucleinopathies including Parkinson's disease, but neither the primary target of α-synuclein toxicity nor its mechanism is identified. Here, we loaded monomeric α-synuclein directly into mammalian glutamatergic nerve terminals and found that it primarily inhibits vesicle endocytosis and subsequently impairs exocytosis and neurotransmission fidelity during prolonged high-frequency stimulation. Such α-synuclein toxicity could be rescued by blocking microtubule polymerization, suggesting that microtubule overassembly underlies the toxicity of acutely elevated α-synuclein in the nerve terminal.
Asunto(s)
Vías Auditivas/efectos de los fármacos , Vías Auditivas/metabolismo , Endocitosis/efectos de los fármacos , Sinapsis/efectos de los fármacos , Tubulina (Proteína)/metabolismo , alfa-Sinucleína/toxicidad , Animales , Exocitosis/efectos de los fármacos , Exocitosis/genética , Femenino , Humanos , Masculino , Mutación/genética , Nocodazol/farmacología , Polimerizacion , Ratas , Ratas Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidad , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/genética , alfa-Sinucleína/genéticaRESUMEN
Azobenzene analogues of the tubulin polymerisation inhibitor combretastatin A4 (PSTs) were previously developed to optically control microtubule dynamics in living systems, with subsecond response time and single-cell spatial precision, by reversible in situ photoswitching of their bioactivity with near-UV/visible light. First-generation PSTs were sufficiently potent and photoswitchable for use in live cells and embryos. However, the link between their seconds-scale and hours-scale bioactivity remained untested. Furthermore, the scope for modifications to tune their photo-structure-activity-relationship or expand their function was unknown. Here, we used large-field-of-view, long-term tandem photoswitching/microscopy to reveal the temporal onset of cytostatic effects. We then synthesised a panel of novel PSTs exploring structural variations that tune photoresponse wavelengths and lipophilicity, identifying promising blue-shifted analogues that are better-compatible with GFP/YFP imaging. Taken together, these results can guide new design and applications for photoswitchable microtubule inhibitors. We also identified tolerated sites for linkers to attach functional cargos; and we tested fluorophores, aiming at RET isomerisation or reporter probes. Instead we found that these antennas greatly enhance long-wavelength single-photon photoisomerisation, by an as-yet un-explored mechanism, that can now drive general progress towards near-quantitative long-wavelength photoswitching of photopharmaceuticals in living systems, with minimal molecular redesign and broad scope.