Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 150(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070767

RESUMEN

The in vitro differentiation of pluripotent stem cells into human intestinal organoids (HIOs) has served as a powerful means for creating complex three-dimensional intestinal structures. Owing to their diverse cell populations, transplantation into an animal host is supported with this system and allows the temporal formation of fully laminated structures, including crypt-villus architecture and smooth muscle layers that resemble native human intestine. Although the endpoint of HIO engraftment has been well described, here we aim to elucidate the developmental stages of HIO engraftment and establish whether it parallels fetal human intestinal development. We analyzed a time course of transplanted HIOs histologically at 2, 4, 6 and 8 weeks post-transplantation, and demonstrated that HIO maturation closely resembles key stages of fetal human intestinal development. We also utilized single-nuclear RNA sequencing to determine and track the emergence of distinct cell populations over time, and validated our transcriptomic data through in situ protein expression. These observations suggest that transplanted HIOs do indeed recapitulate early intestinal development, solidifying their value as a human intestinal model system.


Asunto(s)
Intestinos , Células Madre Pluripotentes , Animales , Humanos , Mucosa Intestinal/metabolismo , Organoides , Diferenciación Celular
2.
Development ; 150(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36971348

RESUMEN

Primary cilia are nearly ubiquitous organelles that transduce molecular and mechanical signals. Although the basic structure of the cilium and the cadre of genes that contribute to ciliary formation and function (the ciliome) are believed to be evolutionarily conserved, the presentation of ciliopathies with narrow, tissue-specific phenotypes and distinct molecular readouts suggests that an unappreciated heterogeneity exists within this organelle. Here, we provide a searchable transcriptomic resource for a curated primary ciliome, detailing various subgroups of differentially expressed genes within the ciliome that display tissue and temporal specificity. Genes within the differentially expressed ciliome exhibited a lower level of functional constraint across species, suggesting organism and cell-specific function adaptation. The biological relevance of ciliary heterogeneity was functionally validated by using Cas9 gene-editing to disrupt ciliary genes that displayed dynamic gene expression profiles during osteogenic differentiation of multipotent neural crest cells. Collectively, this novel primary cilia-focused resource will allow researchers to explore longstanding questions related to how tissue and cell-type specific functions and ciliary heterogeneity may contribute to the range of phenotypes associated with ciliopathies.


Asunto(s)
Ciliopatías , Osteogénesis , Humanos , Cilios/genética , Cilios/metabolismo , Ciliopatías/genética , Desarrollo Embrionario/genética , Diferenciación Celular/genética
3.
Front Oncol ; 13: 1124272, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035164

RESUMEN

Background: Glioblastoma (GBM) is both the most common and aggressive type of primary brain tumor, associated with high mortality rates and resistance to conventional therapy. Despite recent advancements in knowledge and molecular profiling, recurrence of GBM is nearly inevitable. This recurrence has been attributed to the presence of glioma stem cells (GSCs), a small fraction of cells resistant to standard-of-care treatments and capable of self-renewal and tumor initiation. Therefore, targeting these cancer stem cells will allow for the development of more effective therapeutic strategies against GBM. We have previously identified several 7-amino acid length peptides which specifically target GSCs through in vitro and in vivo phage display biopanning. Methods and results: We have combined two of these peptides to create a dual peptide construct (EV), and demonstrated its ability to bind GSCs in vitro and target intracranial GBM in mouse models. A peptide pull-down performed with peptide EV followed by mass spectrometry determined N-cadherin as the binding partner of the peptide, which was validated by enzyme-linked immunosorbent assay and surface plasmon resonance. To develop cytotoxic cellular products aimed at specifically targeting GSCs, chimeric antigen receptors (CARs) were engineered containing the peptide EV in place of the single-chain variable fragment (scFv) as the antigen-binding domain. EV CAR-transduced T cells demonstrated specific reactivity towards GSCs by production of interferon-gamma when exposed to GSCs, in addition to the induction of GSC-specific apoptosis as illustrated by Annexin-V staining. Conclusion: These results exemplify the use of phage display biopanning for the isolation of GSC-targeting peptides, and their potential application in the development of novel cytotoxic therapies for GBM.

4.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045385

RESUMEN

The conserved Runt-related (RUNX) transcription factor family are well-known master regulators of developmental and regenerative processes. Runx1 and Runx2 are both expressed in satellite cells (SC) and skeletal myotubes. Conditional deletion of Runx1 in adult SC negatively impacted self-renewal and impaired skeletal muscle maintenance. Runx1- deficient SC retain Runx2 expression but cannot support muscle regeneration in response to injury. To determine the unique molecular functions of Runx1 that cannot be compensated by Runx2 we deleted Runx1 in C2C12 that retain Runx2 expression and established that myoblasts differentiation was blocked in vitro due in part to ectopic expression of Mef2c, a target repressed by Runx1 . Structure-function analysis demonstrated that the Ets-interacting MID/EID region of Runx1, absent from Runx2, is critical to regulating myoblasts proliferation, differentiation, and fusion. Analysis of in-house and published ChIP-seq datasets from Runx1 (T-cells, muscle) versus Runx2 (preosteoblasts) dependent tissue identified enrichment for a Ets:Runx composite site in Runx1 -dependent tissues. Comparing ATACseq datasets from WT and Runx1KO C2C12 cells showed that the Ets:Runx composite motif was enriched in peaks open exclusively in WT cells compared to peaks unique to Runx1KO cells. Thus, engagement of a set of targets by the RUNX1/ETS complex define the non-redundant functions of Runx1 .

5.
BioDrugs ; 33(6): 647-659, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31552606

RESUMEN

The adoptive transfer of genetically engineered T cells expressing a chimeric antigen receptor (CAR) has shown remarkable results against B cell malignancies. This immunotherapeutic approach has advanced and expanded rapidly from preclinical models to the recent approval of CAR-T cells to treat lymphomas and leukemia by the Food and Drug Administration (FDA). Ongoing research efforts are focused on employing CAR-T cells as a therapy for other cancers, and enhancing their efficacy and safety by optimizing their design. Here we summarize modifications in the intracellular domain of the CAR that gave rise to first-, second-, third- and next-generation CAR-T cells, together with the impact that these different designs have on CAR-T cell biology and function. Further, we describe how the structure of the antigen-sensing ectodomain can be enhanced, leading to superior CAR-T cell signaling and/or function. Finally we discuss how tissue-specific factors may impact the clinical efficacy of CAR-T cells for bone and the central nervous system, as examples of specific indications that may require further CAR signaling optimization to perform in such inhospitable microenvironments.


Asunto(s)
Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Animales , Humanos , Inmunoterapia Adoptiva/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA