Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Integr Biol (Camb) ; 4(10): 1185-97, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22869042

RESUMEN

Meningiomas are the second most common brain tumor, and 20-30% of these tumors are aggressive. The aggressive subtypes are characterized by a capacity for invasion of normal brain with frequent and destructive recurrence patterns. Effective local therapies include surgery and radiation, but there is a need for novel molecular targets to improve survival and reduce morbidity for this group or cancer patients. We have recently identified the N-Myc downstream regulated gene 4, NDRG4, protein as being overexpressed in aggressive meningioma, and in this report, demonstrate its role in cell survival, invasion/migration and angiogenesis. Downregulation of NDRG4 mRNA and protein expression in two high-grade meningioma cancer cell lines, IOMM-Lee and CH-157 MN resulted in reduction in cell survival, DNA fragmentation and G2-M cell cycle arrest. NDRG4 downregulation also decreased cellular invasion and migration, as determined by spheroid migration, linear and radial wound healing, Boyden chamber matrigel invasion, and 3D invasion assays. To determine the effect of NDRG4 depletion on angiogenesis, we studied the immortalized brain endothelial cell line, bEnd.3. We treated bEnd.3 cells with conditioned media from NDRG4-depleted IOMM-Lee and CH-157 MN cells and abrogated their ability to elicit bEnd.3 capillary-like tubes, to proliferate, and to invade. NDRG4 is not overexpressed in bEnd.3 cells and direct NDRG4 depletion had no effect on the cells. This study is significant as it is the first to demonstrate the functional role of NDRG4 in various aspects of meningioma tumor biology. NDRG4 is involved in modulating cell proliferation, invasion, migration and angiogenesis in meningioma, and may play a valuable role as a molecular target in its treatment.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Proteínas Musculares/fisiología , Neovascularización Patológica , Proteínas del Tejido Nervioso/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Fragmentación del ADN , Células HEK293 , Humanos , Lentivirus/metabolismo , Modelos Genéticos , Invasividad Neoplásica , Fenotipo , ARN Mensajero/metabolismo , Proteínas Recombinantes/química
2.
Neuro Oncol ; 13(5): 459-70, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21398658

RESUMEN

Prevention of cranial radiation-induced morbidity following the treatment of primary and metastatic brain cancers, including long-term neurocognitive deficiencies, remains challenging. Previously, we have shown that inhibition of glycogen synthase kinase 3ß (GSK3ß) results in protection of hippocampal neurons from radiation (IR)-induced apoptosis and attenuation of neurocognitive dysfunction resulting from cranial IR. In this study, we examined whether regulation of the repair of IR-induced DNA damage is one of the mechanisms involved in the radioprotective effects of neurons by inhibition of GSK3ß. Specifically, this study showed that inhibition of GSK3ß accelerated double strand-break (DSB) repair efficiency in irradiated mouse hippocampal neurons, as assessed by the neutral comet assay. This coincided with attenuation of IR-induced γ-H2AX foci, a well characterized in situ marker of DSBs. To confirm the effect of GSK3 activity on the efficacy of DSB repair, we further demonstrated that biochemical or genetic inhibition of GSK3 activity resulted in enhanced capacity in nonhomologous end-joining-mediated repair of DSBs in hippocampal neurons. Importantly, none of these effects were observed in malignant glioma cells. Taken together, these results suggested that enhanced repair of IR-induced DNA damage may be a novel mechanism by which inhibition of GSK3ß specifically protects hippocampal neurons from IR-induced apoptosis. Furthermore, these findings warrant future investigations of the molecular mechanisms underlying the role of GSK3ß in the DSB repair of normal neurons and the potential clinical application of neuroprotection with GSK3ß inhibitors during cranial IR.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Hipocampo/efectos de la radiación , Neuronas/efectos de la radiación , Animales , Western Blotting , Células Cultivadas , Ensayo Cometa , Reparación del ADN/efectos de la radiación , Glioma/enzimología , Glioma/patología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/citología , Hipocampo/enzimología , Humanos , Ratones , Neuronas/citología , Neuronas/enzimología , ARN Interferente Pequeño/genética
3.
PLoS One ; 6(7): e22182, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21799791

RESUMEN

Despite wide margins and high dose irradiation, unresectable malignant glioma (MG) is less responsive to radiation and is uniformly fatal. We previously found that cytosolic phospholipase A2 (cPLA(2)) is a molecular target for radiosensitizing cancer through the vascular endothelium. Autotaxin (ATX) and lysophosphatidic acid (LPA) receptors are downstream from cPLA(2) and highly expressed in MG. Using the ATX and LPA receptor inhibitor, α-bromomethylene phosphonate LPA (BrP-LPA), we studied ATX and LPA receptors as potential molecular targets for the radiosensitization of tumor vasculature in MG. Treatment of Human Umbilical Endothelial cells (HUVEC) and mouse brain microvascular cells bEND.3 with 5 µmol/L BrP-LPA and 3 Gy irradiation showed decreased clonogenic survival, tubule formation, and migration. Exogenous addition of LPA showed radioprotection that was abrogated in the presence of BrP-LPA. In co-culture experiments using bEND.3 and mouse GL-261 glioma cells, treatment with BrP-LPA reduced Akt phosphorylation in both irradiated cell lines and decreased survival and migration of irradiated GL-261 cells. Using siRNA to knock down LPA receptors LPA1, LPA2 or LPA3 in HUVEC, we demonstrated that knockdown of LPA2 but neither LPA1 nor LPA3 led to increased viability and proliferation. However, knockdown of LPA1 and LPA3 but not LPA2 resulted in complete abrogation of tubule formation implying that LPA1 and LPA3 on endothelial cells are likely targets of BrP-LPA radiosensitizing effect. Using heterotopic tumor models of GL-261, mice treated with BrP-LPA and irradiation showed a tumor growth delay of 6.8 days compared to mice treated with irradiation alone indicating that inhibition of ATX and LPA receptors may significantly improve malignant glioma response to radiation therapy. These findings identify ATX and LPA receptors as molecular targets for the development of radiosensitizers for MG.


Asunto(s)
Glioma/irrigación sanguínea , Glioma/metabolismo , Terapia Molecular Dirigida , Neovascularización Patológica/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Fármacos Sensibilizantes a Radiaciones/farmacología , Receptores del Ácido Lisofosfatídico/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de la radiación , Glioma/patología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de la radiación , Humanos , Lisofosfolípidos/farmacología , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Neovascularización Patológica/radioterapia , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
4.
Int J Radiat Oncol Biol Phys ; 76(2): 557-65, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20117291

RESUMEN

PURPOSE: Development of new treatments is critical to effective protection against radiation-induced injury. We investigate the potential of developing small-molecule inhibitors of glycogen synthase kinase 3beta (GSK-3beta)-SB216763 or SB415286-as radioprotective agents to attenuate intestinal injury. METHODS AND MATERIALS: A survival study was done by use of C57BL/6J mice to evaluate the radioprotective effect of GSK-3beta inhibitors. Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay and immunohistochemical staining for Bax and Bcl-2 were used to assess apoptosis in the small intestines of the treated mice. A clonogenic survival study, apoptosis assays (staining with annexin V or 4',6-diamidino-2-phenylindole), and immunoblot analysis of beta-catenin, Bcl-2, Bax, and caspase 3 were done by use of Rat intestinal epithelial cell line IEC-6 cells. RESULTS: Pretreatment with SB415286 significantly improved survival of mice irradiated with 8 and 12 Gy. Mice pretreated with SB216763 or SB415286 showed a significant reduction in TUNEL- and Bax-positive cells and an increase in Bcl-2-positive cells in intestinal crypts at 4 and/or 12 h after radiation with 4 and/or 8 Gy compared with radiation alone. Pretreatment of irradiated IEC-6 cells with GSK-3beta inhibitors significantly increased clonogenic survival compared with cells treated with radiation alone. This increase was due to the attenuation of radiation-induced apoptosis, as shown by annexin V and 4',6-diamidino-2-phenylindole assays, as well as immunoblot analysis of Bcl-2, Bax, and caspase 3. CONCLUSIONS: Glycogen synthase kinase 3beta small-molecule inhibitors protect mouse intestine from radiation-induced damage in cell culture and in vivo and improve survival of mice. Molecular mechanisms of this protection involve attenuated radiation-induced apoptosis regulated by Bcl-2, Bax, and caspase 3. Therefore GSK-3beta inhibitors reduce deleterious consequences of intestinal irradiation and thereby improve quality of life during radiation therapy.


Asunto(s)
Aminofenoles/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Indoles/farmacología , Intestinos/efectos de la radiación , Maleimidas/farmacología , Traumatismos Experimentales por Radiación/prevención & control , Protectores contra Radiación/farmacología , Animales , Apoptosis , Caspasa 3/análisis , Línea Celular , Supervivencia Celular , Glucógeno Sintasa Quinasa 3 beta , Etiquetado Corte-Fin in Situ/métodos , Ratones , Ratones Endogámicos C57BL , Traumatismos Experimentales por Radiación/metabolismo , Ratas , Proteína X Asociada a bcl-2/análisis , beta Catenina/análisis
5.
Cancer Res ; 68(14): 5859-68, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18632640

RESUMEN

There are now more than 10 million cancer survivors in the United States. With these numbers, chronic sequelae that result from cancer therapy have become a major health care problem. Although radiation therapy of the brain has improved cancer cure rates, learning disorders and memory deficits are a common consequence of this therapy. Here we show that glycogen synthase kinase 3beta (GSK-3beta) is required for radiation-induced hippocampal neuronal apoptosis and subsequent neurocognitive decline. Inhibition of GSK-3beta either by small molecules (SB216763 or SB415286) or by ectopic expression of kinase-inactive GSK-3beta before irradiation significantly attenuated radiation-induced apoptosis in hippocampal neurons. GSK-3beta inhibition with SB216763 or SB415286 also decreased apoptosis in the subgranular zone of the hippocampus in irradiated mice, leading to improved cognitive function in irradiated animals. Studies of the molecular mechanisms of the cytoprotective effect showed that GSK-3beta activity in hippocampal neurons was not significantly altered by radiation, pointing to the indirect involvement of this enzyme in radiation-induced apoptosis. At the same time, radiation led to increased accumulation of p53, whereas inhibition of the basal level of GSK-3beta activity before radiation prevented p53 accumulation, suggesting a possible mechanism of cytoprotection by GSK-3beta inhibitors. These findings identify GSK-3beta signaling as a key regulator of radiation-induced damage in hippocampal neurons and suggest that GSK-3beta inhibitors may have a therapeutic role in protecting both pediatric and adult cancer patients and may help to improve quality of life in cancer survivors.


Asunto(s)
Encéfalo/patología , Encéfalo/efectos de la radiación , Trastornos del Conocimiento/patología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Enfermedades del Sistema Nervioso/patología , Animales , Apoptosis , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Traumatismos por Radiación/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA