RESUMEN
Nuclear receptor SET domain containing protein 2 (NSD2) catalyzes the methylation of histone H3 lysine 36 (H3K36). It is a determinant in Wolf-Hirschhorn syndrome and is overexpressed in human multiple myeloma. Despite the relevance of NSD2 to cancer, there are no potent, selective inhibitors of this enzyme reported. Here, a combination of kinetic isotope effect measurements and quantum chemical modeling was used to provide subangstrom details of the transition state structure for NSD2 enzymatic activity. Kinetic isotope effects were measured for the methylation of isolated HeLa cell nucleosomes by NSD2. NSD2 preferentially catalyzes the dimethylation of H3K36 along with a reduced preference for H3K36 monomethylation. Primary Me-(14)C and (36)S and secondary Me-(3)H3, Me-(2)H3, 5'-(14)C, and 5'-(3)H2 kinetic isotope effects were measured for the methylation of H3K36 using specifically labeled S-adenosyl-l-methionine. The intrinsic kinetic isotope effects were used as boundary constraints for quantum mechanical calculations for the NSD2 transition state. The experimental and calculated kinetic isotope effects are consistent with an SN2 chemical mechanism with methyl transfer as the first irreversible chemical step in the reaction mechanism. The transition state is a late, asymmetric nucleophilic displacement with bond separation from the leaving group at (2.53 Å) and bond making to the attacking nucleophile (2.10 Å) advanced at the transition state. The transition state structure can be represented in a molecular electrostatic potential map to guide the design of inhibitors that mimic the transition state geometry and charge.
Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas Represoras/metabolismo , Catálisis , Células HeLa , N-Metiltransferasa de Histona-Lisina/química , Humanos , Metilación , Modelos Moleculares , Proteínas Represoras/químicaRESUMEN
Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 k(cat)/K(m) ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2.
Asunto(s)
Alanina/genética , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Linfoma de Células B/enzimología , Linfoma de Células B/genética , Lisina/metabolismo , Mutación/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Línea Celular Tumoral , Análisis Mutacional de ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica , Glicina/genética , Heterocigoto , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Complejo Represivo Polycomb 2 , Especificidad por Sustrato , Factores de Transcripción/química , Factores de Transcripción/metabolismoRESUMEN
The human, cytosolic enzyme isocitrate dehydrogenase 1 (IDH1) reversibly converts isocitrate to α-ketoglutarate (αKG). Cancer-associated somatic mutations in IDH1 result in a loss of this normal function but a gain in a new or neomorphic ability to convert αKG to the oncometabolite 2-hydroxyglutarate (2HG). To improve our understanding of the basis for this phenomenon, we have conducted a detailed kinetic study of wild-type IDH1 as well as the known 2HG-producing clinical R132H and G97D mutants and mechanistic Y139D and (newly described) G97N mutants. In the reductive direction of the normal reaction (αKG to isocitrate), dead-end inhibition studies suggest that wild-type IDH1 goes through a random sequential mechanism, similar to previous reports on related mammalian IDH enzymes. However, analogous experiments studying the reductive neomorphic reaction (αKG to 2HG) with the mutant forms of IDH1 are more consistent with an ordered sequential mechanism, with NADPH binding before αKG. This result was further confirmed by primary kinetic isotope effects for which saturating with αKG greatly reduced the observed isotope effect on (D)(V/K)NADPH. For the mutant IDH1 enzyme, the change in mechanism was consistently associated with reduced efficiencies in the use of αKG as a substrate and enhanced efficiencies using NADPH as a substrate. We propose that the sum of these kinetic changes allows the mutant IDH1 enzymes to reductively trap αKG directly into 2HG, rather than allowing it to react with carbon dioxide and form isocitrate, as occurs in the wild-type enzyme.
Asunto(s)
Neoplasias Encefálicas/enzimología , Citosol/enzimología , Isocitrato Deshidrogenasa , Proteínas Mutantes , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Cristalografía por Rayos X , Glutaratos/química , Glutaratos/metabolismo , Humanos , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isocitratos/química , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , MutaciónRESUMEN
We examined the cathepsin C-catalyzed hydrolysis of dipeptide substrates of the form Yaa-Xaa-AMC, using steady-state and pre-steady-state kinetic methods. The substrates group into three kinetic profiles based upon the broad range observed for k(cat)/K(a) and k(cat) values, pre-steady-state time courses, and solvent kinetic isotope effects (sKIEs). The dipeptide substrate Gly-Arg-AMC displayed large values for k(cat)/K(a) (1.6 ± 0.09 µM(-1) s(-1)) and k(cat) (255 ± 6 s(-1)), an inverse sKIE on k(cat)/K(a) ((D)(k(cat)/K(a)) = 0.6 ± 0.15), a modest, normal sKIE on k(cat) ((D)k(cat) = 1.6 ± 0.2), and immeasurable pre-steady-state kinetics, indicating an extremely fast pre-steady-state rate (>400 s(-1)). (Errors on fitted values are omitted in the text for clarity but may be found in Table 2.) These results conformed to a kinetic model where the acylation (k(ac)) and deacylation (k(dac)) half-reactions are very fast and similar in value. The second substrate type, Gly-Tyr-AMC and Ser-Tyr-AMC, the latter the subject of a comprehensive kinetic study (Schneck et al. (2008) Biochemistry 47, 8697-8710), were found to be less active substrates compared to Gly-Arg-AMC, with respective k(cat)/K(a) values of 0.49 ± 0.07 µM(-1 )s(-1) and 5.3 ± 0.5 µM(-1 )s(-1), and k(cat) values of 28 ± 1 s(-1) and 25 ± 0.5 s(-1). Solvent kinetic isotope effects for Ser-Tyr-AMC were found to be inverse for k(cat)/K(a) ((D)(k(cat)/K(a)) = 0.74 ± 0.05) and normal for k(cat) ((D)k(cat) = 2.3 ± 0.1) but unlike Gly-Arg-AMC, pre-steady-state kinetics of Gly-Tyr-AMC and Ser-Tyr-AMC were measurable and characterized by a single-exponential burst, with fast transient rates (490 s(-1) and 390 s(-1), respectively), from which it was determined that k(ac) â« k(dac) â¼ k(cat). The third substrate type, Gly-Ile-AMC, gave very low values of k(cat)/K(a) (0.0015 ± 0.0001 µM(-1) s(-1)) and k(cat) (0.33 ± 0.02 s(-1)), no sKIEs, ((D)(k(cat)/K(a)) = 1.05 ± 0.5 and (D)k(cat) = 1.06 ± 0.4), and pre-steady-state kinetics exhibited a discernible, but negligible, transient phase. For this third class of substrate, kinetic modeling was consistent with a mechanism in which k(dac) > k(ac) â¼ k(cat), and for which an isotope-insensitive step in the acylation half-reaction is the slowest. The combined results of these studies suggested that the identity of the amino acid at the P(1) position of the substrate is the main determinant of catalysis. On the basis of these kinetic data, together with crystallographic studies of substrate analogues and molecular dynamics analysis with models of acyl-enzyme intermediates, we present a catalytic model derived from the relative rates of the acylation vs deacylation half-reactions of cathepsin C. The chemical steps of catalysis are proposed to be dependent upon the conformational freedom of the amino acid substituents for optimal alignment for thiolation (acylation) or hydrolysis (deacylation). These studies suggest ideas for inhibitor design for papain-family cysteine proteases and strategies to progress drug discovery for other classes of disease-relevant cysteine proteases.
Asunto(s)
Aminoácidos/química , Catepsina C/química , Dipéptidos/química , Catálisis , Catepsina C/genética , Humanos , Concentración de Iones de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Especificidad por SustratoRESUMEN
The continual bacterial adaptation to antibiotics creates an ongoing medical need for the development of novel therapeutics. Polypeptide deformylase (PDF) is a highly conserved bacterial enzyme, which is essential for viability. It has previously been shown that PDF inhibitors represent a promising new area for the development of antimicrobial agents, and that many of the best PDF inhibitors demonstrate slow, time-dependent binding. To improve our understanding of the mechanistic origin of this time-dependent inhibition, we examined in detail the kinetics of PDF catalysis and inhibition by several different PDF inhibitors. Varying pH and solvent isotope led to clear changes in time-dependent inhibition parameters, as did inclusion of NaCl, which binds to the active site metal of PDF. Quantitative analysis of these results demonstrated that the observed time dependence arises from slow binding of the inhibitors to the active site metal. However, we also found several metal binding inhibitors that exhibited rapid, non-time-dependent onset of inhibition. By a combination of structural and chemical modification studies, we show that metal binding is only slow when the rest of the inhibitor makes optimal hydrogen bonds within the subsites of PDF. Both of these interactions between the inhibitor and enzyme were found to be necessary to observe time-dependent inhibition, as elimination of either leads to its loss.
Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/química , Antibacterianos/farmacología , Streptococcus pneumoniae/enzimología , Amidohidrolasas/farmacocinética , Antibacterianos/química , Catálisis , Dominio Catalítico/efectos de los fármacos , Cloruros/química , Cloruros/farmacología , Cristalografía por Rayos X , Medición de Intercambio de Deuterio/métodos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacocinética , Ácidos Hidroxámicos/farmacología , Marcaje Isotópico , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Solventes , Streptococcus pneumoniae/efectos de los fármacos , Zinc/químicaRESUMEN
Epigenetics is an area of increasing interest for drug discovery, driving the need for assays that use nucleosome substrates. Our studies showed that SUV39H1, a histone lysine methyltransferase, and Dnmt3b/Dnmt3L, a DNA methyltransferase, both exhibited approximately five times more activity on monomer nucleosomes than on DNA-core-trimmed nucleosomes in a scintillation proximity assay (SPA). The methyltransferases recognize and have a preference for nucleosomes with longer DNA strands. Our findings suggest that the use of monomer nucleosomes as substrates using SPA technology could lead to more robust screening assays and potentially more specific small molecule inhibitors of epigenetic enzymes.
Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Nucleosomas/metabolismo , Epigenómica , Células HeLa , Humanos , Especificidad por Sustrato , ADN Metiltransferasa 3BRESUMEN
Steady-state kinetic analysis of focal adhesion kinase-1 (FAK1) was performed using radiometric measurement of phosphorylation of a synthetic peptide substrate (Ac-RRRRRRSETDDYAEIID-NH(2), FAK-tide) which corresponds to the sequence of an autophosphorylation site in FAK1. Initial velocity studies were consistent with a sequential kinetic mechanism, for which apparent kinetic values k(cat) (0.052 +/- 0.001 s(-1)), K(MgATP) (1.2 +/- 0.1 microM), K(iMgATP) (1.3 +/- 0.2 microM), K(FAK-tide) (5.6 +/- 0.4 microM), and K(iFAK-tide) (6.1 +/- 1.1 microM) were obtained. Product and dead-end inhibition data indicated that enzymatic phosphorylation of FAK-tide by FAK1 was best described by a random bi bi kinetic mechanism, for which both E-MgADP-FAK-tide and E-MgATP-P-FAK-tide dead-end complexes form. FAK1 catalyzed the betagamma-bridge:beta-nonbridge positional oxygen exchange of [gamma-(18)O(4)]ATP in the presence of 1 mM [gamma-(18)O(4)]ATP and 1.5 mM FAK-tide with a progressive time course which was commensurate with catalysis, resulting in a rate of exchange to catalysis of k(x)/k(cat) = 0.14 +/- 0.01. These results indicate that phosphoryl transfer is reversible and that a slow kinetic step follows formation of the E-MgADP-P-FAK-tide complex. Further kinetic studies performed in the presence of the microscopic viscosogen sucrose revealed that solvent viscosity had no effect on k(cat)/K(FAK-tide), while k(cat) and k(cat)/K(MgATP) were both decreased linearly at increasing solvent viscosity. Crystallographic characterization of inactive versus AMP-PNP-liganded structures of FAK1 showed that a large conformational motion of the activation loop upon ATP binding may be an essential step during catalysis and would explain the viscosity effect observed on k(cat)/K(m) for MgATP but not on k(cat)/K(m) for FAK-tide. From the positional isotope exchange, viscosity, and structural data it may be concluded that enzyme turnover (k(cat)) is rate-limited by both reversible phosphoryl group transfer (k(forward) approximately 0.2 s(-1) and k(reverse) approximately 0.04 s(-1)) and a slow step (k(conf) approximately 0.1 s(-1)) which is probably the opening of the activation loop after phosphoryl group transfer but preceding product release.
Asunto(s)
Quinasa 1 de Adhesión Focal/química , Quinasa 1 de Adhesión Focal/metabolismo , Péptidos/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Cinética , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Fosforilación , Unión ProteicaRESUMEN
Cathepsin C, or dipeptidyl peptidase I, is a lysosomal cysteine protease of the papain family that catalyzes the sequential removal of dipeptides from the free N-termini of proteins and peptides. Using the dipeptide substrate Ser-Tyr-AMC, cathepsin C was characterized in both steady-state and pre-steady-state kinetic modes. The pH(D) rate profiles for both log k cat/ K m and log k cat conformed to bell-shaped curves for which an inverse solvent kinetic isotope effect (sKIE) of 0.71 +/- 0.14 for (D)( k cat/ K a) and a normal sKIE of 2.76 +/- 0.03 for (D) k cat were obtained. Pre-steady-state kinetics exhibited a single-exponential burst of AMC formation in which the maximal acylation rate ( k ac = 397 +/- 5 s (-1)) was found to be nearly 30-fold greater than the rate-limiting deacylation rate ( k dac = 13.95 +/- 0.013 s (-1)) and turnover number ( k cat = 13.92 +/- 0.001 s (-1)). Analysis of pre-steady-state burst kinetics in D 2O allowed abstraction of a normal sKIE for the acylation half-reaction that was not observed in steady-state kinetics. Since normal sKIEs were obtained for all measurable acylation steps in the presteady state [ (D) k ac = 1.31 +/- 0.04, and the transient kinetic isotope effect at time zero (tKIE (0)) = 2.3 +/- 0.2], the kinetic step(s) contributing to the inverse sKIE of (D)( k cat/ K a) must occur more rapidly than the experimental time frame of the transient kinetics. Results are consistent with a chemical mechanism in which acylation occurs via a two-step process: the thiolate form of Cys-234, which is enriched in D 2O and gives rise to the inverse value of (D)( k cat/ K a), attacks the substrate to form a tetrahedral intermediate that proceeds to form an acyl-enzyme intermediate during a proton transfer step expressing a normal sKIE. The subsequent deacylation half-reaction is rate-limiting, with proton transfers exhibiting normal sKIEs. Through derivation of 12 equations describing all kinetic parameters and sKIEs for the proposed cathepsin C mechanism, integration of both steady-state and pre-steady-state kinetics with sKIEs allowed the provision of at least one self-consistent set of values for all 13 rate constants in this cysteine protease's chemical mechanism. Simulation of the resulting kinetic profile showed that at steady state approximately 80% of the enzyme exists in an active-site cysteine-acylated form in the mechanistic pathway. The chemical and kinetic details deduced from this work provide a potential roadmap to help steer drug discovery efforts for this and other disease-relevant cysteine proteases.
Asunto(s)
Catepsina C/química , Catepsina C/metabolismo , Deuterio/química , Sitios de Unión , Clonación Molecular , Humanos , Concentración de Iones de Hidrógeno , Cinética , Conformación Proteica , Hidróxido de Sodio/química , Solventes , Agua/químicaRESUMEN
A series of amino acid anthranilamide derivatives identified from a high-throughput screening campaign as novel, potent, and glucose-sensitive inhibitors of human liver glycogen phosphorylase a are described. A solid-phase synthesis using Wang resin was also developed which provided efficient access to a variety of analogues, and resulted in the identification of key structure-activity relationships, and the discovery of a potent exemplar (IC(50)=80 nM). The SAR scope, synthetic strategy, and in vitro results for this series are presented herein.
Asunto(s)
Glucógeno Fosforilasa de Forma Hepática/antagonistas & inhibidores , ortoaminobenzoatos/química , Aminoácidos/química , Animales , Química Farmacéutica/métodos , Diseño de Fármacos , Glucógeno Fosforilasa de Forma Hepática/química , Humanos , Concentración 50 Inhibidora , Hígado/enzimología , Microsomas Hepáticos/enzimología , Modelos Químicos , Ratas , Relación Estructura-Actividad , Urea/química , ortoaminobenzoatos/farmacologíaRESUMEN
In addition to selecting molecules of pharmacological interest, high-throughput screening campaigns often generate hits of undesirable mechanism, which cannot be exploited for drug discovery as they lead to obvious problems of specificity and developability. Examples of undesirable mechanisms are target alkylation/acylation and compound aggregation. Both types of "promiscuous" mechanisms have been described in the literature, as have methods for their detection. In addition to these mechanisms, compounds can also inhibit by oxidizing susceptible enzyme targets, such as metalloenzymes and cysteine-using enzymes. However, this redox phenomenon has been documented infrequently, and an easy method for detecting this behavior is missing. In this article, the authors describe direct proof of small-molecule oxidation of a cysteine protease by liquid chromatography/tandem mass spectrometry, develop a simple assay to predict this oxidizing behavior by compounds, and show the utility of this assay by demonstrating its ability to distinguish nuisance redox compounds from well-behaved inhibitors in 3 historical GlaxoSmithKline drug discovery efforts.
Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Oxidantes/análisis , Oxidación-Reducción , Catepsina L , Catepsinas/metabolismo , Cromatografía Liquida , Cisteína Endopeptidasas/metabolismo , Concentración 50 Inhibidora , Modelos Biológicos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Espectrometría de Masas en TándemRESUMEN
Tumor suppressor p53 is typically maintained at low levels in normal cells. In response to cellular stresses, such as DNA damage, p53 is stabilized and can stimulate responses leading to cell cycle arrest or apoptosis. Corresponding to its central role in preventing propagation of damaged cells, mutation or deletion of p53 is found in nearly 50% of all human tumors. Mdm2 (mouse-d-minute 2) and its human ortholog (hmdm2 or hdm2) catalyze the ubiquitination of p53, targeting it for degradation via the proteosome. Thus, the activity of mdm2 is inversely correlated with p53 levels. Based on this, inhibition of human mdm2 activity by a small-molecule therapeutic will lead to net stabilization of p53 and be the basis for development of a novel cancer therapeutic. Previous high-throughput screening assays of mdm2 measured the autoubiquitination activity of mdm2, which occurs in the absence of an acceptor substrate such as p53. The major drawback to this approach is that inhibitors of mdm2 autoubiquitination may lead to a net stabilization of mdm2 and thus have the opposite effect of inhibitors that interfere with p53 ubiquitination. The authors describe the development, validation, and execution of a high-throughput screening measuring the ubiquitination of p53 by mdm2, with p53 labeled with europium and the other substrate (Ub-UbcH5b) labeled with a Cy5 on the ubiquitin. After confirming that known inhibitors are detected with this assay, it was successfully automated and used to query >600,000 compounds from the GlaxoSmithKline collection for mdm2 inhibitors.
Asunto(s)
Bioensayo/métodos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación , Catálisis/efectos de los fármacos , Europio/farmacología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Concentración 50 Inhibidora , Proteínas Proto-Oncogénicas c-mdm2/farmacología , Reproducibilidad de los Resultados , Factores de Tiempo , Volumetría , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación/efectos de los fármacosRESUMEN
Epigenetic gene regulation is a critical process controlling differentiation and development, the malfunction of which may underpin a variety of diseases. In this article, we review the current landscape of small-molecule epigenetic modulators including drugs on the market, key compounds in clinical trials, and chemical probes being used in epigenetic mechanistic studies. Hit identification strategies for the discovery of small-molecule epigenetic modulators are summarized with respect to writers, erasers, and readers of histone marks. Perspectives are provided on opportunities for new hit discovery approaches, some of which may define the next generation of therapeutic intervention strategies for epigenetic processes.
Asunto(s)
Descubrimiento de Drogas , Epigénesis Genética , Ensayos Analíticos de Alto Rendimiento , Descubrimiento de Drogas/métodos , Epigénesis Genética/efectos de los fármacos , Epigenómica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Humanos , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacologíaRESUMEN
Histone methyltransferases (HMT) catalyze the methylation of histone tail lysines, resulting in changes in gene transcription. Misregulation of these enzymes has been associated with various forms of cancer, making this target class a potential new area for the development of novel chemotherapeutics. EZH2 is the catalytic component of the polycomb group repressive complex (PRC2), which selectively methylates histone H3 lysine 27 (H3K27). EZH2 is overexpressed in prostate, breast, bladder, brain, and other tumor types and is recognized as a molecular marker for cancer progression and aggressiveness. Several new reagents and assays were developed to aid in the identification of EZH2 inhibitors, and these were used to execute two high-throughput screening campaigns. Activity assays using either an H3K27 peptide or nucleosomes as substrates for methylation are described. The strategy to screen EZH2 with either a surrogate peptide or a natural substrate led to the identification of the same tractable series. Compounds from this series are reversible, are [(3)H]-S-adenosyl-L-methionine competitive, and display biochemical inhibition of H3K27 methylation.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Nucleosomas/metabolismo , Péptidos/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Ensayos de Selección de Medicamentos Antitumorales/métodos , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Indicadores y Reactivos , Cinética , Péptidos/antagonistas & inhibidores , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/química , Reproducibilidad de los ResultadosRESUMEN
Beta-ketoacyl-acyl carrier protein reductase (KACPR) catalyzes the NADPH-dependent reduction of beta-ketoacyl-acyl carrier protein (AcAc-ACP) to generate (3S)-beta-hydroxyacyl-ACP during the chain-elongation reaction of bacterial fatty acid biosynthesis. We report the evaluation of the kinetic and chemical mechanisms of KACPR using acetoacetyl-CoA (AcAc-CoA) as a substrate. Initial velocity, product inhibition, and deuterium kinetic isotope effect studies were consistent with a random bi-bi rapid-equilibrium kinetic mechanism of KACPR with formation of an enzyme-NADP(+)-AcAc-CoA dead-end complex. Plots of log V/K(NADPH) and log V/K(AcAc)(-)(CoA) indicated the presence of a single basic group (pK = 5.0-5.8) and a single acidic group (pK = 8.0-8.8) involved in catalysis, while the plot of log V vs pH indicated that at high pH an unprotonated form of the ternary enzyme complex was able to undergo catalysis. Significant and identical primary deuterium kinetic isotope effects were observed for V (2.6 +/- 0.4), V/K(NADPH) (2.6 +/- 0.1), and V/K(AcAc)(-)(CoA) (2.6 +/- 0.1) at pH 7.6, but all three values attenuated to values of near unity (1.1 +/- 0.03 or 0.91 +/- 0.02) at pH 10. Similarly, the large alpha-secondary deuterium kinetic isotope effect of 1.15 +/- 0.02 observed for [4R-(2)H]NADPH on V/K(AcAc)(-)(CoA) at pH 7.6 was reduced to a value of unity (1.00 +/- 0.04) at high pH. The complete analysis of the pH profiles and the solvent, primary, secondary, and multiple deuterium isotope effects were most consistent with a chemical mechanism of KACPR that is stepwise, wherein the hydride-transfer step is followed by protonation of the enolate intermediate. Estimations of the intrinsic primary and secondary deuterium isotope effects ((D)k = 2.7, (alpha)(-D)k = 1.16) and the correspondingly negligible commitment factors suggest a nearly full expression of the intrinsic isotope effects on (D)V/K and (alpha)(-D)V/K, and are consistent with a late transition state for the hydride transfer step. Conversely, the estimated intrinsic solvent effect ((D)2(O)k) of 5.3 was poorly expressed in the experimentally derived parameters (D)2(O)V/K and (D)2(O)V (both = 1.2 +/- 0.1), in agreement with the estimation that the catalytic commitment factor for proton transfer to the enolate intermediate is large. Such detailed knowledge of the chemical mechanism of KAPCR may now help guide the rational design of, or inform screening assay-design strategies for, potent inhibitors of this and related enzymes of the short chain dehydrogenase enzyme class.