Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32561583

RESUMEN

Cultivated bacterioplankton representatives from diverse lineages and locations are essential for microbiology, but the large majority of taxa either remain uncultivated or lack isolates from diverse geographic locales. We paired large-scale dilution-to-extinction (DTE) cultivation with microbial community analysis and modeling to expand the phylogenetic and geographic diversity of cultivated bacterioplankton and to evaluate DTE cultivation success. Here, we report results from 17 DTE experiments totaling 7,820 individual incubations over 3 years, yielding 328 repeatably transferable isolates. Comparison of isolates to microbial community data for source waters indicated that we successfully isolated 5% of the observed bacterioplankton community throughout the study; 43% and 26% of our isolates matched operational taxonomic units and amplicon single-nucleotide variants, respectively, within the top 50 most abundant taxa. Isolates included those from previously uncultivated clades such as SAR11 LD12 and Actinobacteria acIV, as well as geographically novel members from other ecologically important groups like SAR11 subclade IIIa, SAR116, and others, providing isolates in eight putatively new genera and seven putatively new species. Using a newly developed DTE cultivation model, we evaluated taxon viability by comparing relative abundance with cultivation success. The model (i) revealed the minimum attempts required for successful isolation of taxa amenable to growth on our media and (ii) identified possible subpopulation viability variation in abundant taxa such as SAR11 that likely impacts cultivation success. By incorporating viability in experimental design, we can now statistically constrain the effort necessary for successful cultivation of specific taxa on a defined medium.IMPORTANCE Even before the coining of the term "great plate count anomaly" in the 1980s, scientists had noted the discrepancy between the number of microorganisms observed under the microscope and the number of colonies that grew on traditional agar media. New cultivation approaches have reduced this disparity, resulting in the isolation of some of the "most wanted" bacterial lineages. Nevertheless, the vast majority of microorganisms remain uncultured, hampering progress toward answering fundamental biological questions about many important microorganisms. Furthermore, few studies have evaluated the underlying factors influencing cultivation success, limiting our ability to improve cultivation efficacy. Our work details the use of dilution-to-extinction (DTE) cultivation to expand the phylogenetic and geographic diversity of available axenic cultures. We also provide a new model of the DTE approach that uses cultivation results and natural abundance information to predict taxon-specific viability and iteratively constrain DTE experimental design to improve cultivation success.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas Bacteriológicas/métodos , Biodiversidad , Fitoplancton/aislamiento & purificación , Modelos Biológicos
2.
Nature ; 494(7437): 357-60, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23407494

RESUMEN

Several reports proposed that the extraordinary dominance of the SAR11 bacterial clade in ocean ecosystems could be a consequence of unusual mechanisms of resistance to bacteriophage infection, including 'cryptic escape' through reduced cell size and/or K-strategist defence specialism. Alternatively, the evolution of high surface-to-volume ratios coupled with minimal genomes containing high-affinity transporters enables unusually efficient metabolism for oxidizing dissolved organic matter in the world's oceans that could support vast population sizes despite phage susceptibility. These ideas are important for understanding plankton ecology because they emphasize the potentially important role of top-down mechanisms in predation, thus determining the size of SAR11 populations and their concomitant role in biogeochemical cycling. Here we report the isolation of diverse SAR11 viruses belonging to two virus families in culture, for which we propose the name 'pelagiphage', after their host. Notably, the pelagiphage genomes were highly represented in marine viral metagenomes, demonstrating their importance in nature. One of the new phages, HTVC010P, represents a new podovirus subfamily more abundant than any seen previously, in all data sets tested, and may represent one of the most abundant virus subfamilies in the biosphere. This discovery disproves the theory that SAR11 cells are immune to viral predation and is consistent with the interpretation that the success of this highly abundant microbial clade is the result of successfully evolved adaptation to resource competition.


Asunto(s)
Organismos Acuáticos/aislamiento & purificación , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Agua de Mar/virología , Organismos Acuáticos/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/virología , Bacteriófagos/genética , Bacteriófagos/fisiología , Bermudas , Biota , Conducta Competitiva , Cadena Alimentaria , Genoma Viral/genética , Metagenoma/genética , Modelos Biológicos , Datos de Secuencia Molecular , Oregon , Océano Pacífico , Plancton/fisiología , Agua de Mar/microbiología
3.
Proc Natl Acad Sci U S A ; 112(25): 7767-72, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26056292

RESUMEN

Phytoplankton inhabiting oligotrophic ocean gyres actively reduce their phosphorus demand by replacing polar membrane phospholipids with those lacking phosphorus. Although the synthesis of nonphosphorus lipids is well documented in some heterotrophic bacterial lineages, phosphorus-free lipid synthesis in oligotrophic marine chemoheterotrophs has not been directly demonstrated, implying they are disadvantaged in phosphate-deplete ecosystems, relative to phytoplankton. Here, we show the SAR11 clade chemoheterotroph Pelagibacter sp. str. HTCC7211 renovates membrane lipids when phosphate starved by replacing a portion of its phospholipids with monoglucosyl- and glucuronosyl-diacylglycerols and by synthesizing new ornithine lipids. Lipid profiles of cells grown with excess phosphate consisted entirely of phospholipids. Conversely, up to 40% of the total lipids were converted to nonphosphorus lipids when cells were starved for phosphate, or when growing on methylphosphonate. Cells sequentially limited by phosphate and methylphosphonate transformed >75% of their lipids to phosphorus-free analogs. During phosphate starvation, a four-gene cluster was significantly up-regulated that likely encodes the enzymes responsible for lipid renovation. These genes were found in Pelagibacterales strains isolated from a phosphate-deficient ocean gyre, but not in other strains from coastal environments, suggesting alternate lipid synthesis is a specific adaptation to phosphate scarcity. Similar gene clusters are found in the genomes of other marine α-proteobacteria, implying lipid renovation is a common strategy used by heterotrophic cells to reduce their requirement for phosphorus in oligotrophic habitats.


Asunto(s)
Metabolismo de los Lípidos , Fosfatos/metabolismo , Perfilación de la Expresión Génica , Genes Bacterianos , Filogenia , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/metabolismo
4.
Appl Environ Microbiol ; 82(5): 1613-1624, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26729720

RESUMEN

Heterotrophic bacteria in the SAR11 and Roseobacter lineages shape the marine carbon, nitrogen, phosphorous, and sulfur cycles, yet they do so having adopted divergent ecological strategies. Currently, it is unknown whether these globally significant groups partition into specific niches with respect to micronutrients (e.g., trace metals) and how that may affect marine trace metal cycling. Here, we used comparative genomics to identify diverse iron, cobalt, nickel, copper, and zinc uptake capabilities in SAR11 and Roseobacter genomes and uncover surprising unevenness within and between lineages. The strongest predictors for the extent of the metal uptake gene content are the total number of transporters per genome, genome size, total metal transporters, and GC content, but numerous exceptions exist in both groups. Taken together, our results suggest that SAR11 have strongly minimized their trace metal uptake versatility, with high-affinity zinc uptake being a unique exception. The larger Roseobacter genomes have greater trace metal uptake versatility on average, but they also appear to have greater plasticity, resulting in phylogenetically similar genomes having largely different capabilities. Ultimately, phylogeny is predictive of the diversity and extent of 20 to 33% of all metal uptake systems, suggesting that specialization in metal utilization mostly occurred independently from overall lineage diversification in both SAR11 and Roseobacter. We interpret these results as reflecting relatively recent trace metal niche partitioning in both lineages, suggesting that concentrations and chemical forms of metals in the marine environment are important factors shaping the gene content of marine heterotrophic Alphaproteobacteria of the SAR11 and Roseobacter lineages.


Asunto(s)
Organismos Acuáticos/metabolismo , Bacterias/metabolismo , Metales/metabolismo , Oligoelementos/metabolismo , Bacterias/genética , Proteínas de Transporte de Membrana/genética
5.
Environ Microbiol ; 17(10): 3847-56, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25818237

RESUMEN

Areas of low oxygen have spread exponentially over the past 40 years, and are cited as a key stressor on coastal ecosystems. The world's second largest coastal hypoxic (≤ 2 mg of O2 l(-1)) zone occurs annually in the northern Gulf of Mexico. The net effect of hypoxia is the diversion of energy flow away from higher trophic levels to microorganisms. This energy shunt is consequential to the overall productivity of hypoxic water masses and the ecosystem as a whole. In this study, water column samples were collected at 39 sites in the nGOM, 21 of which were hypoxic. Analysis of the microbial community along a hypoxic to oxic dissolved oxygen gradient revealed that the relative abundance (iTag) of Thaumarchaeota species 16S rRNA genes (> 40% of the microbial community in some hypoxic samples), the absolute abundance (quantitative polymerase chain reaction; qPCR) of Thaumarchaeota 16S rRNA genes and archaeal ammonia-monooxygenase gene copy number (qPCR) were significantly higher in hypoxic samples. Spatial interpolation of the microbial and chemical data revealed a continuous, shelfwide band of low dissolved oxygen waters that were dominated by Thaumarchaeota (and Euryarchaeota), amoA genes and high concentrations of phosphate in the nGOM, thus implicating physicochemical forcing on microbial abundance.


Asunto(s)
Archaea/metabolismo , Oxígeno/metabolismo , Anaerobiosis , Archaea/clasificación , Archaea/genética , ADN de Archaea/genética , Ecosistema , Genes Arqueales , Golfo de México , México , Oxidorreductasas/genética , Filogenia , ARN Ribosómico 16S/genética
6.
mSystems ; : e0131823, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980056

RESUMEN

Estuarine and coastal ecosystems are of high economic and ecological importance, owing to their diverse communities and the disproportionate role they play in carbon cycling, particularly in carbon sequestration. Organisms inhabiting these environments must overcome strong natural fluctuations in salinity, nutrients, and turbidity, as well as numerous climate change-induced disturbances such as land loss, sea level rise, and, in some locations, increasingly severe tropical cyclones that threaten to disrupt future ecosystem health. The northern Gulf of Mexico (nGoM) along the Louisiana coast contains dozens of estuaries, including the Mississippi-Atchafalaya River outflow, which dramatically influence the region due to their vast upstream watershed. Nevertheless, the microbiology of these estuaries and surrounding coastal environments has received little attention. To improve our understanding of microbial ecology in the understudied coastal nGoM, we conducted a 16S rRNA gene amplicon survey at eight sites and multiple time points along the Louisiana coast and one inland swamp spanning freshwater to high brackish salinities, totaling 47 duplicated Sterivex (0.2-2.7 µm) and prefilter (>2.7 µm) samples. We cataloged over 13,000 Amplicon Sequence ariants (ASVs) from common freshwater and marine clades such as SAR11 (Alphaproteobacteria), Synechococcus (Cyanobacteria), and acI and Candidatus Actinomarina (Actinobacteria). We observed correlations with freshwater or marine habitats in many organisms and characterized a group of taxa with specialized distributions across brackish water sites, supporting the hypothesis of an endogenous brackish-water community. Additionally, we observed brackish-water associations for several aquatic clades typically considered marine or freshwater taxa, such as SAR11 subclade II, SAR324, and the acI Actinobacteria. The data presented here expand the geographic coverage of microbial ecology in estuarine communities, help delineate the native and transitory members of these environments, and provide critical aquatic microbiological baseline data for coastal and estuarine sites in the nGoM.IMPORTANCEEstuarine and coastal waters are diverse ecosystems influenced by tidal fluxes, interconnected wetlands, and river outflows, which are of high economic and ecological importance. Microorganisms play a pivotal role in estuaries as "first responders" and ecosystem architects, yet despite their ecological importance, they remain underrepresented in microbial studies compared to open ocean environments. This leads to substantial knowledge gaps that are important for understanding global biogeochemical cycling and making decisions about conservation and management strategies in these environments. Our study makes key contributions to the microbial ecology of estuarine and coastal habitats in the northern Gulf of Mexico. Our microbial community data support the concept of a globally distributed, core brackish microbiome and emphasize previously underrecognized brackish-water taxa. Given the projected worsening of land loss, oil spills, and natural disasters in this region, our results will serve as important baseline data for researchers investigating the microbial communities found across estuaries.

7.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365254

RESUMEN

The evolutionary trajectory of Methylophilaceae includes habitat transitions from freshwater sediments to freshwater and marine pelagial that resulted in genome reduction (genome-streamlining) of the pelagic taxa. However, the extent of genetic similarities in the genomic structure and microdiversity of the two genome-streamlined pelagic lineages (freshwater "Ca. Methylopumilus" and the marine OM43 lineage) has so far never been compared. Here, we analyzed complete genomes of 91 "Ca. Methylopumilus" strains isolated from 14 lakes in Central Europe and 12 coastal marine OM43 strains. The two lineages showed a remarkable niche differentiation with clear species-specific differences in habitat preference and seasonal distribution. On the other hand, we observed a synteny preservation in their genomes by having similar locations and types of flexible genomic islands (fGIs). Three main fGIs were identified: a replacement fGI acting as phage defense, an additive fGI harboring metabolic and resistance-related functions, and a tycheposon containing nitrogen-, thiamine-, and heme-related functions. The fGIs differed in relative abundances in metagenomic datasets suggesting different levels of variability ranging from strain-specific to population-level adaptations. Moreover, variations in one gene seemed to be responsible for different growth at low substrate concentrations and a potential biogeographic separation within one species. Our study provides a first insight into genomic microdiversity of closely related taxa within the family Methylophilaceae and revealed remarkably similar dynamics involving mobile genetic elements and recombination between freshwater and marine family members.


Asunto(s)
Methylophilaceae , Genoma Bacteriano , Islas Genómicas , Filogenia , Lagos
8.
Microbiol Resour Announc ; 12(11): e0062023, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37830797

RESUMEN

Here, we present the draft genome sequence of strain LSUCC0117, a representative of the abundant aquatic BAL58 Betaproteobacteria group which we isolated from a coastal site in the northern Gulf of Mexico. The genome is estimated at over 99% complete, with a genome size of 2,687,225 bp.

9.
ISME J ; 17(4): 620-629, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739346

RESUMEN

The Order Pelagibacterales (SAR11) is the most abundant group of heterotrophic bacterioplankton in global oceans and comprises multiple subclades with unique spatiotemporal distributions. Subclade IIIa is the primary SAR11 group in brackish waters and shares a common ancestor with the dominant freshwater IIIb (LD12) subclade. Despite its dominance in brackish environments, subclade IIIa lacks systematic genomic or ecological studies. Here, we combine closed genomes from new IIIa isolates, new IIIa MAGS from San Francisco Bay (SFB), and 460 highly complete publicly available SAR11 genomes for the most comprehensive pangenomic study of subclade IIIa to date. Subclade IIIa represents a taxonomic family containing three genera (denoted as subgroups IIIa.1, IIIa.2, and IIIa.3) that had distinct ecological distributions related to salinity. The expansion of taxon selection within subclade IIIa also established previously noted metabolic differentiation in subclade IIIa compared to other SAR11 subclades such as glycine/serine prototrophy, mosaic glyoxylate shunt presence, and polyhydroxyalkanoate synthesis potential. Our analysis further shows metabolic flexibility among subgroups within IIIa. Additionally, we find that subclade IIIa.3 bridges the marine and freshwater clades based on its potential for compatible solute transport, iron utilization, and bicarbonate management potential. Pure culture experimentation validated differential salinity ranges in IIIa.1 and IIIa.3 and provided detailed IIIa cell size and volume data. This study is an important step forward for understanding the genomic, ecological, and physiological differentiation of subclade IIIa and the overall evolutionary history of SAR11.


Asunto(s)
Alphaproteobacteria , Aguas Salinas , Filogenia , Océanos y Mares , Genómica , Evolución Biológica , Alphaproteobacteria/genética , Agua de Mar
10.
Microbiol Resour Announc ; 12(11): e0066723, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37812006

RESUMEN

Here we present the genomes of four marine agarolytic bacteria belonging to the Bacteroidota and Proteobacteria. Two genomes are closed and two are in draft form, but all are at least 99% complete and offer new opportunities to study agar-degradation in marine bacteria.

11.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36520069

RESUMEN

The northern Gulf of Mexico (nGOM) hypoxic zone is a shallow water environment where methane, a potent greenhouse gas, fluxes from sediments to bottom water and remains trapped due to summertime stratification. When the water column is destratified, an active planktonic methanotrophic community could mitigate the efflux of methane, which accumulates to high concentrations, to the atmosphere. To investigate the possibility of such a biofilter in the nGOM hypoxic zone we performed metagenome assembly, and metagenomic and metatranscriptomic read mapping. Methane monooxygenase (pmoA) was an abundant transcript, yet few canonical methanotrophs have been reported in this environment, suggesting a role for non-canonical methanotrophs. To determine the identity of these methanotrophs, we reconstructed six novel metagenome-assembled genomes (MAGs) in the Planctomycetota, Verrucomicrobiota and one putative Latescibacterota, each with at least one pmoA gene copy. Based on ribosomal protein phylogeny, closely related microbes (mostly from Tara Oceans) and isolate genomes were selected and co-analyzed with the nGOM MAGs. Gene annotation and read mapping suggested that there is a large, diverse and unrecognized community of active aerobic methanotrophs in the nGOM hypoxic zone and in the global ocean that could mitigate methane flux to the atmosphere.


Asunto(s)
Plancton , Agua , Golfo de México , Plancton/genética , Metagenoma , Metano/metabolismo , Filogenia , Metagenómica , ARN Ribosómico 16S/genética
12.
mSystems ; 8(3): e0017923, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37199998

RESUMEN

Bacterioplankton of the SAR11 clade are the most abundant marine microorganisms and consist of numerous subclades spanning order-level divergence (Pelagibacterales). The assignment of the earliest diverging subclade V (a.k.a. HIMB59) to the Pelagibacterales is highly controversial, with multiple recent phylogenetic studies placing them completely separate from SAR11. Other than through phylogenomics, subclade V has not received detailed examination due to limited genomes from this group. Here, we assessed the ecogenomic characteristics of subclade V to better understand the role of this group in comparison to the Pelagibacterales. We used a new isolate genome, recently released single-amplified genomes and metagenome-assembled genomes, and previously established SAR11 genomes to perform a comprehensive comparative genomics analysis. We paired this analysis with the recruitment of metagenomes spanning the open ocean, coastal, and brackish systems. Phylogenomics, average amino acid identity, and 16S rRNA gene phylogeny indicate that SAR11 subclade V is synonymous with the ubiquitous AEGEAN-169 clade and support the contention that this group represents a taxonomic family. AEGEAN-169 shared many bulk genome qualities with SAR11, such as streamlining and low GC content, but genomes were generally larger. AEGEAN-169 had overlapping distributions with SAR11 but was metabolically distinct from SAR11 in its potential to transport and utilize a broader range of sugars as well as in the transport of trace metals and thiamin. Thus, regardless of the ultimate phylogenetic placement of AEGEAN-169, these organisms have distinct metabolic capacities that likely allow them to differentiate their niche from canonical SAR11 taxa. IMPORTANCE One goal of marine microbiologists is to uncover the roles various microorganisms are playing in biogeochemical cycles. Success in this endeavor relies on differentiating groups of microbes and circumscribing their relationships. An early-diverging group (subclade V) of the most abundant bacterioplankton, SAR11, has recently been proposed as a separate lineage that does not share a most recent common ancestor. But beyond phylogenetics, little has been done to evaluate how these organisms compare with SAR11. Our work leverages dozens of new genomes to demonstrate the similarities and differences between subclade V and SAR11. In our analysis, we also establish that subclade V is synonymous with a group of bacteria established from 16S rRNA gene sequences, AEGEAN-169. Subclade V/AEGEAN-169 has clear metabolic distinctions from SAR11 and their shared traits point to remarkable convergent evolution if they do not share a most recent common ancestor.


Asunto(s)
Alphaproteobacteria , Agua de Mar , Agua de Mar/microbiología , Filogenia , ARN Ribosómico 16S/genética , Organismos Acuáticos , Bacterias/genética
13.
Microbiol Resour Announc ; 12(6): e0021023, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37162353

RESUMEN

We performed deep metagenomic sequencing on hydrocarbon-degrading marine microcosms designed to experimentally determine the effect of photo-oxidation on oil biodegradation dynamics. Assembly, binning, and dereplication yielded 73 unique metagenome-assembled genomes (MAGs) from 6 phyla, of which 61 are predicted to be over 90% complete.

14.
Microbiol Resour Announc ; 11(9): e0064422, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35993706

RESUMEN

A common method for quantifying microbial abundances in situ is through metagenomic read recruitment to genomes and normalizing read counts as reads per kilobase (of genome) per million (bases of recruited sequences) (RPKM). We created RRAP (RPKM Recruitment Analysis Pipeline), a wrapper that automates this process using Bowtie2 and SAMtools.

15.
Microbiol Resour Announc ; 11(5): e0018622, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35499337

RESUMEN

A new marine Flavobacteriaceae sp. strain, LSUCC0859, was isolated off the coast of Louisiana with artificial seawater via high-throughput dilution-to-extinction (DTE) cultivation. The 2,168,862-bp genome sequence provides opportunities to investigate the biology of a poorly understood lineage within the Bacteroidetes.

16.
J Microbiol Biol Educ ; 23(2)2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36061319

RESUMEN

Bacterial characterization is an important aspect of microbiology that includes experimentally determining growth rates, environmental conditions conducive to growth, and the types of energy sources microorganisms can use. Researchers use this information to help understand and predict an organism's ecological distribution and environmental functions. Microbiology students generally conduct bacterial characterization experiments in their coursework; however, they are frequently restricted to model organisms without ecological relevance and already well-studied physiologies. We present a course-based undergraduate research experience (CURE) curriculum to involve students in characterization of previously untested, ecologically relevant aquatic free-living bacteria (bacterioplankton) cultures to identify the usable nutrient substrates, as well as the temperature and salinity ranges conducive to growth. Students use these results to connect their organism's physiology to the isolation environment. This curriculum also exposes students to advanced microbiology methods such as flow cytometry for measuring cell concentrations, teaches them to use the programming language R for data plotting, and emphasizes scientific communication through writing, speaking, poster creation/presentation, and social media. This CURE is an attractive introduction to scientific research and was successfully tested with 187 students in three semesters at two different universities. Students generated reproducible growth data for multiple strains across these different deployments, demonstrating the utility of the curriculum for research support.

17.
J Bacteriol ; 193(2): 584-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21075932

RESUMEN

Janibacter sp. strain HTCC2649 is a novel marine member of the Actinobacteria, family Intrasporangiaceae, and is closely related to Janibacter melonis CM2104(T) and Knoellia sinensis HKI 0119(T). The organism was isolated from a sample collected at Hydrostation S south of Bermuda by using high-throughput culturing techniques. Here we present the genome sequence of Janibacter sp. strain HTCC2649.


Asunto(s)
Actinomycetales/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Actinomycetales/aislamiento & purificación , Bermudas , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Microbiología del Agua
18.
Appl Environ Microbiol ; 77(13): 4693-6, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21571880

RESUMEN

Microorganisms in diverse terrestrial surface and subsurface environments can anaerobically catalyze the oxidative dissolution of uraninite. While a limited quantity (∼5 to 12 µmol liter(-1)) of uranium is oxidatively dissolved in pure culture studies, the metabolism is coupled to electron transport, providing the potential of uraninite to support indigenous microbial populations and to solubilize uranium.


Asunto(s)
Bacterias/metabolismo , Microbiología Ambiental , Uranio/metabolismo , Anaerobiosis , Nitritos/metabolismo , Oxidación-Reducción , Compuestos de Uranio/metabolismo
19.
Microbiol Resour Announc ; 10(19)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986091

RESUMEN

Here, we introduce a Python-based repository, sparse-growth-curve, a software package designed for parsing cellular growth curves with low temporal resolution. The repository uses cell density and time data as the input, automatically separates different growth phases, calculates the exponential growth rates, and produces multiple graphs to aid in interpretation.

20.
mSystems ; : e0027621, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34184914

RESUMEN

Among the thousands of species that comprise marine bacterioplankton communities, most remain functionally obscure. One key cosmopolitan group in this understudied majority is the OM252 clade of Gammaproteobacteria. Although frequently found in sequence data and even previously cultured, the diversity, metabolic potential, physiology, and distribution of this clade has not been thoroughly investigated. Here, we examined these features of OM252 bacterioplankton using a newly isolated strain and genomes from publicly available databases. We demonstrated that this group constitutes a globally distributed novel genus ("Candidatus Halomarinus"), sister to Litoricola, comprising two subclades and multiple distinct species. OM252 organisms have small genomes (median, 2.21 Mbp) and are predicted obligate aerobes capable of alternating between chemoorganoheterotrophic and chemolithotrophic growth using reduced sulfur compounds as electron donors. Subclade I genomes encode genes for the Calvin-Benson-Bassham cycle for carbon fixation. One representative strain of subclade I, LSUCC0096, had extensive halotolerance and a mesophilic temperature range for growth, with a maximum rate of 0.36 doublings/h at 35°C. Cells were curved rod/spirillum-shaped, ∼1.5 by 0.2 µm. Growth yield on thiosulfate as the sole electron donor under autotrophic conditions was roughly one-third that of heterotrophic growth, even though calculations indicated similar Gibbs energies for both catabolisms. These phenotypic data show that some "Ca. Halomarinus" organisms can switch between serving as carbon sources or sinks and indicate the likely anabolic cost of lithoautotrophic growth. Our results thus provide new hypotheses about the roles of these organisms in global biogeochemical cycling of carbon and sulfur. IMPORTANCE Marine microbial communities are teeming with understudied taxa due to the sheer numbers of species in any given sample of seawater. One group, the OM252 clade of Gammaproteobacteria, has been identified in gene surveys from myriad locations, and one isolated organism has even been genome sequenced (HIMB30). However, further study of these organisms has not occurred. Using another isolated representative (strain LSUCC0096) and publicly available genome sequences from metagenomic and single-cell genomic data sets, we examined the diversity within the OM252 clade and the distribution of these taxa in the world's oceans, reconstructed the predicted metabolism of the group, and quantified growth dynamics in LSUCC0096. Our results generate new knowledge about the previously enigmatic OM252 clade and point toward the importance of facultative chemolithoautotrophy for supporting some clades of ostensibly "heterotrophic" taxa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA