Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Allergy Clin Immunol ; 153(1): 216-229, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37714437

RESUMEN

BACKGROUND: Although most individuals effectively control herpesvirus infections, some suffer from severe and/or recurrent infections. A subset of these patients possess defects in natural killer (NK) cells, lymphocytes that recognize and lyse herpesvirus-infected cells; however, the genetic etiology is rarely diagnosed. PLCG2 encodes a signaling protein in NK-cell and B-cell signaling. Dominant-negative or gain-of-function variants in PLCG2 cause cold urticaria, antibody deficiency, and autoinflammation. However, loss-of-function variants and haploinsufficiency have not been reported to date. OBJECTIVES: The investigators aimed to identify the genetic cause of NK-cell immunodeficiency in 2 families and herein describe the functional consequences of 2 novel loss-of-function variants in PLCG2. METHODS: The investigators employed whole-exome sequencing in conjunction with mass cytometry, microscopy, functional assays, and a mouse model of PLCG2 haploinsufficiency to investigate 2 families with NK-cell immunodeficiency. RESULTS: The investigators identified novel heterozygous variants in PLCG2 in 2 families with severe and/or recurrent herpesvirus infections. In vitro studies demonstrated that these variants were loss of function due to haploinsufficiency with impaired NK-cell calcium flux and cytotoxicity. In contrast to previous PLCG2 variants, B-cell function remained intact. Plcg2+/- mice also displayed impaired NK-cell function with preserved B-cell function, phenocopying human disease. CONCLUSIONS: PLCG2 haploinsufficiency represents a distinct syndrome from previous variants characterized by NK-cell immunodeficiency with herpesvirus susceptibility, expanding the spectrum of PLCG2-related disease.


Asunto(s)
Haploinsuficiencia , Síndromes de Inmunodeficiencia , Fosfolipasa C gamma , Animales , Humanos , Ratones , Infecciones por Herpesviridae , Síndromes de Inmunodeficiencia/genética , Células Asesinas Naturales , Transducción de Señal , Fosfolipasa C gamma/genética
2.
Front Immunol ; 13: 1007022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389718

RESUMEN

Juvenile dermatomyositis (JDM) is a pediatric autoimmune disease associated with characteristic rash and proximal muscle weakness. To gain insight into differential lymphocyte gene expression in JDM, peripheral blood mononuclear cells from 4 new-onset JDM patients and 4 healthy controls were sorted into highly enriched lymphocyte populations for RNAseq analysis. NK cells from JDM patients had substantially greater differentially expressed genes (273) than T (57) and B (33) cells. Upregulated genes were associated with the innate immune response and cell cycle, while downregulated genes were associated with decreased ribosomal RNA. Suppressed ribosomal RNA in JDM NK cells was validated by measuring transcription and phosphorylation levels. We confirmed a population of low ribosome expressing NK cells in healthy adults and children. This population of low ribosome NK cells was substantially expanded in 6 treatment-naïve JDM patients and was associated with decreased NK cell degranulation. The enrichment of this NK low ribosome population was completely abrogated in JDM patients with quiescent disease. Together, these data suggest NK cells are highly activated in new-onset JDM patients with an increased population of low ribosome expressing NK cells, which correlates with decreased NK cell function and resolved with control of active disease.


Asunto(s)
Dermatomiositis , Adulto , Humanos , Niño , Leucocitos Mononucleares/metabolismo , Células Asesinas Naturales/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , ARN Ribosómico/genética
3.
JCI Insight ; 3(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30429375

RESUMEN

Juvenile dermatomyositis (JDM) is a debilitating pediatric autoimmune disease manifesting with characteristic rash and muscle weakness. To delineate signaling abnormalities in JDM, mass cytometry was performed with PBMCs from treatment-naive JDM patients and controls. NK cell percentages were lower while frequencies of naive B cells and naive CD4+ T cells were higher in JDM patients than in controls. These cell frequency differences were attenuated with cessation of active disease. A large number of signaling differences were identified in treatment-naive JDM patients compared with controls. Classification models incorporating feature selection demonstrated that differences in phospholipase Cγ2 (PLCγ2) phosphorylation comprised 10 of 12 features (i.e., phosphoprotein in a specific immune cell subset) distinguishing the 2 groups. Because NK cells represented 5 of these 12 features, further studies focused on the PLCγ2 pathway in NK cells, which is responsible for stimulating calcium flux and cytotoxic granule movement. No differences were detected in upstream signaling or total PLCγ2 protein levels. Hypophosphorylation of PLCγ2 and downstream mitogen-activated protein kinase-activated protein kinase 2 were partially attenuated with cessation of active disease. PLCγ2 hypophosphorylation in treatment-naive JDM patients resulted in decreased calcium flux. The identification of dysregulation of PLCγ2 phosphorylation and decreased calcium flux in NK cells provides potential mechanistic insight into JDM pathogenesis.


Asunto(s)
Dermatomiositis/metabolismo , Células Asesinas Naturales/metabolismo , Fosfolipasa C gamma/metabolismo , Transducción de Señal , Adolescente , Niño , Preescolar , Dermatomiositis/inmunología , Femenino , Humanos , Leucocitos Mononucleares , Masculino , Fosforilación
4.
JCI Insight ; 3(15)2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30089725

RESUMEN

Polyarticular juvenile idiopathic arthritis (JIA) is among the most challenging of the JIA subtypes to treat. Even with current biologic therapies, the disease remains difficult to control in a substantial subset of patients, highlighting the need for new therapies. The aim of this study was to use the high dimensionality afforded by mass cytometry with phospho-specific antibodies to delineate signaling abnormalities in immune cells from treatment-naive polyarticular JIA patients. Peripheral blood mononuclear cells were isolated from 17 treatment-naive polyarticular JIA patients, 10 of the patients after achieving clinical remission, and 19 healthy controls. Samples were stimulated for 15 minutes with IL-6 or IFN-γ and analyzed by mass cytometry. Following IFN-γ stimulation, increased STAT1 and/or STAT3 phosphorylation was observed in subsets of CD4 T cells and classical monocytes from treatment-naive patients. The enhanced IFN-γ signaling was associated with increased expression of JAK1 and SOCS1 in CD4 T cells. Furthermore, substantial heterogeneity in surface marker expression was observed among the subsets of CD4 T cells and classical monocytes with increased IFN-γ responsiveness. The identification of enhanced IFN-γ signaling in CD4 T cells and classical monocytes from treatment-naive polyarticular JIA patients provides mechanistic support for investigations into therapies that attenuate IFN-γ signaling in this disease.


Asunto(s)
Artritis Juvenil/inmunología , Interferón gamma/metabolismo , Adolescente , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Artritis Juvenil/sangre , Artritis Juvenil/tratamiento farmacológico , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Citometría de Flujo , Humanos , Lactante , Interferón gamma/inmunología , Masculino , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA