Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2300644120, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38306481

RESUMEN

It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Ratones , Células Endoteliales , Proteoma , Péptidos
2.
Infect Immun ; : e0050923, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526063

RESUMEN

Diabetes mellitus, characterized by impaired insulin signaling, is associated with increased incidence and severity of infections. Various diabetes-related complications contribute to exacerbated bacterial infections, including hyperglycemia, innate immune cell dysfunction, and infection with antibiotic-resistant bacterial strains. One defining symptom of diabetes is hyperglycemia, resulting in elevated blood and tissue glucose concentrations. Glucose is the preferred carbon source of several bacterial pathogens, and hyperglycemia escalates bacterial growth and virulence. Hyperglycemia promotes specific mechanisms of bacterial virulence known to contribute to infection chronicity, including tissue adherence and biofilm formation. Foot infections are a significant source of morbidity in individuals with diabetes and consist of biofilm-associated polymicrobial communities. Bacteria perform complex interspecies behaviors conducive to their growth and virulence within biofilms, including metabolic cross-feeding and altered phenotypes more tolerant to antibiotic therapeutics. Moreover, the metabolic dysfunction caused by diabetes compromises immune cell function, resulting in immune suppression. Impaired insulin signaling induces aberrations in phagocytic cells, which are crucial mediators for controlling and resolving bacterial infections. These aberrancies encompass altered cytokine profiles, the migratory and chemotactic mechanisms of neutrophils, and the metabolic reprogramming required for the oxidative burst and subsequent generation of bactericidal free radicals. Furthermore, the immune suppression caused by diabetes and the polymicrobial nature of the diabetic infection microenvironment may promote the emergence of novel strains of multidrug-resistant bacterial pathogens. This review focuses on the "triple threat" linked to worsened bacterial infections in individuals with diabetes: (i) altered nutritional availability in diabetic tissues, (ii) diabetes-associated immune suppression, and (iii) antibiotic treatment failure.

3.
PLoS Pathog ; 14(3): e1006907, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29554137

RESUMEN

Staphylococcus aureus exhibits many defenses against host innate immunity, including the ability to replicate in the presence of nitric oxide (NO·). S. aureus NO· resistance is a complex trait and hinges on the ability of this pathogen to metabolically adapt to the presence of NO·. Here, we employed deep sequencing of transposon junctions (Tn-Seq) in a library generated in USA300 LAC to define the complete set of genes required for S. aureus NO· resistance. We compared the list of NO·-resistance genes to the set of genes required for LAC to persist within murine skin infections (SSTIs). In total, we identified 168 genes that were essential for full NO· resistance, of which 49 were also required for S. aureus to persist within SSTIs. Many of these NO·-resistance genes were previously demonstrated to be required for growth in the presence of this immune radical. However, newly defined genes, including those encoding SodA, MntABC, RpoZ, proteins involved with Fe-S-cluster repair/homeostasis, UvrABC, thioredoxin-like proteins and the F1F0 ATPase, have not been previously reported to contribute to S. aureus NO· resistance. The most striking finding was that loss of any genes encoding components of the F1F0 ATPase resulted in mutants unable to grow in the presence of NO· or any other condition that inhibits cellular respiration. In addition, these mutants were highly attenuated in murine SSTIs. We show that in S. aureus, the F1F0 ATPase operates in the ATP-hydrolysis mode to extrude protons and contribute to proton-motive force. Loss of efficient proton extrusion in the ΔatpG mutant results in an acidified cytosol. While this acidity is tolerated by respiring cells, enzymes required for fermentation cannot operate efficiently at pH ≤ 7.0 and the ΔatpG mutant cannot thrive. Thus, S. aureus NO· resistance requires a mildly alkaline cytosol, a condition that cannot be achieved without an active F1F0 ATPase enzyme complex.


Asunto(s)
Proteínas Bacterianas/genética , Inmunidad Innata/inmunología , Óxido Nítrico/farmacología , Infecciones Cutáneas Estafilocócicas/inmunología , Staphylococcus aureus/efectos de los fármacos , Virulencia/inmunología , Animales , Regulación Bacteriana de la Expresión Génica , Biblioteca de Genes , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Ratones , Ratones Endogámicos C57BL , Infecciones Cutáneas Estafilocócicas/genética , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Virulencia/efectos de los fármacos , Virulencia/genética
4.
J Immunol ; 199(10): 3634-3643, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29038248

RESUMEN

Critically ill patients typically present with hyperglycemia. Treatment with conventional insulin therapy (targeting 144-180 mg/dl) improves patient survival; however, intensive insulin therapy (IIT) targeting normal blood glucose levels (81-108 mg/dl) increases the incidence of moderate and severe hypoglycemia, and increases mortality. Septic patients are especially prone to IIT-induced hypoglycemia, but the mechanism remains unknown. Here, we show that codelivery of insulin with otherwise sublethal doses of LPS induced hypoglycemic shock in mice within 1-2 h. LPS impaired clearance of insulin, which amplified insulin receptor signaling. These effects were mediated by caspase-11, TLR4, and complement, each of which trigger eicosanoid production that potentiates insulin signaling. Finally, in an animal model of sepsis, we observed that Salmonella typhimurium-infected mice exhibited simultaneous impaired insulin clearance coexisting with insulin resistance. Our results raise the possibility that septic patients have impaired insulin clearance, which could increase their susceptibility to hypoglycemia during IIT, contraindicating its use.


Asunto(s)
Hiperinsulinismo Congénito/tratamiento farmacológico , Insulina/uso terapéutico , Infecciones por Salmonella/tratamiento farmacológico , Salmonella typhimurium/inmunología , Sepsis/tratamiento farmacológico , Animales , Caspasas/genética , Caspasas/metabolismo , Caspasas Iniciadoras , Células Cultivadas , Proteínas del Sistema Complemento/metabolismo , Hiperinsulinismo Congénito/inmunología , Femenino , Humanos , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Salmonella/inmunología , Sepsis/inmunología , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
5.
Mol Microbiol ; 100(5): 759-73, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26851155

RESUMEN

Staphylococcus aureus is a Gram-positive pathogen that resists many facets of innate immunity including nitric oxide (NO·). Staphylococcus aureus NO-resistance stems from its ability to evoke a metabolic state that circumvents the negative effects of reactive nitrogen species. The combination of l-lactate and peptides promotes S. aureus growth at moderate NO-levels, however, neither nutrient alone suffices. Here, we investigate the staphylococcal malate-quinone and l-lactate-quinone oxidoreductases (Mqo and Lqo), both of which are critical during NO-stress for the combined utilization of peptides and l-lactate. We address the specific contributions of Lqo-mediated l-lactate utilization and Mqo-dependent amino acid consumption during NO-stress. We show that Lqo conversion of l-lactate to pyruvate is required for the formation of ATP, an essential energy source for peptide utilization. Thus, both Lqo and Mqo are essential for growth under these conditions making them attractive candidates for targeted therapeutics. Accordingly, we exploited a modelled Mqo/Lqo structure to define the catalytic and substrate-binding residues.We also compare the S. aureus Mqo/Lqo enzymes to their close relatives throughout the staphylococci and explore the substrate specificities of each enzyme. This study provides the initial characterization of the mechanism of action and the immunometabolic roles for a newly defined staphylococcal enzyme family.


Asunto(s)
Ácido Láctico/química , Óxido Nítrico/metabolismo , Oxidorreductasas/química , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidad , Adenosina Trifosfato/biosíntesis , Aminoácidos/metabolismo , Catálisis , Ácido Láctico/metabolismo , Oxidorreductasas/inmunología , Oxidorreductasas/metabolismo , Péptidos/metabolismo , Ácido Pirúvico/metabolismo , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Especificidad por Sustrato , Virulencia
6.
J Virol ; 90(1): 433-43, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26491151

RESUMEN

UNLABELLED: Chikungunya virus (CHIKV) is an alphavirus responsible for causing epidemic outbreaks of polyarthralgia in humans. Because CHIKV is initially introduced via the skin, where γδ T cells are prevalent, we evaluated the response of these cells to CHIKV infection. CHIKV infection led to a significant increase in γδ T cells in the infected foot and draining lymph node that was associated with the production of proinflammatory cytokines and chemokines in C57BL/6J mice. γδ T cell(-/-) mice demonstrated exacerbated CHIKV disease characterized by less weight gain and greater foot swelling than occurred in wild-type mice, as well as a transient increase in monocytes and altered cytokine/chemokine expression in the foot. Histologically, γδ T cell(-/-) mice had increased inflammation-mediated oxidative damage in the ipsilateral foot and ankle joint compared to wild-type mice which was independent of differences in CHIKV replication. These results suggest that γδ T cells play a protective role in limiting the CHIKV-induced inflammatory response and subsequent tissue and joint damage. IMPORTANCE: Recent epidemics, including the 2004 to 2007 outbreak and the spread of CHIKV to naive populations in the Caribbean and Central and South America with resultant cases imported into the United States, have highlighted the capacity of CHIKV to cause explosive epidemics where the virus can spread to millions of people and rapidly move into new areas. These studies identified γδ T cells as important to both recruitment of key inflammatory cell populations and dampening the tissue injury due to oxidative stress. Given the importance of these cells in the early response to CHIKV, this information may inform the development of CHIKV vaccines and therapeutics.


Asunto(s)
Fiebre Chikungunya/inmunología , Virus Chikungunya/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/análisis , Linfocitos T/inmunología , Animales , Peso Corporal , Modelos Animales de Enfermedad , Miembro Posterior/patología , Histocitoquímica , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Linfocitos T/química
7.
mBio ; 15(6): e0086224, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38767353

RESUMEN

Mammalian target of rapamycin (mTOR) is a key regulator of metabolism in the mammalian cell. Here, we show the essential role for mTOR signaling in the immune response to bacterial infection. Inhibition of mTOR during infection with Staphylococcus aureus revealed that mTOR signaling is required for bactericidal free radical production by phagocytes. Mechanistically, mTOR supported glucose transporter GLUT1 expression, potentially through hypoxia-inducible factor 1α, upon phagocyte activation. Cytokine and chemokine signaling, inducible nitric oxide synthase, and p65 nuclear translocation were present at similar levels during mTOR suppression, suggesting an NF-κB-independent role for mTOR signaling in the immune response during bacterial infection. We propose that mTOR signaling primarily mediates the metabolic requirements necessary for phagocyte bactericidal free radical production. This study has important implications for the metabolic requirements of innate immune cells during bacterial infection as well as the clinical use of mTOR inhibitors.IMPORTANCESirolimus, everolimus, temsirolimus, and similar are a class of pharmaceutics commonly used in the clinical treatment of cancer and the anti-rejection of transplanted organs. Each of these agents suppresses the activity of the mammalian target of rapamycin (mTOR), a master regulator of metabolism in human cells. Activation of mTOR is also involved in the immune response to bacterial infection, and treatments that inhibit mTOR are associated with increased susceptibility to bacterial infections in the skin and soft tissue. Infections caused by Staphylococcus aureus are among the most common and severe. Our study shows that this susceptibility to S. aureus infection during mTOR suppression is due to an impaired function of phagocytic immune cells responsible for controlling bacterial infections. Specifically, we observed that mTOR activity is required for phagocytes to produce antimicrobial free radicals. These results have important implications for immune responses during clinical treatments and in disease states where mTOR is suppressed.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Fagocitos , Transducción de Señal , Infecciones Estafilocócicas , Staphylococcus aureus , Serina-Treonina Quinasas TOR , Staphylococcus aureus/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Fagocitos/inmunología , Fagocitos/metabolismo , Fagocitos/microbiología , Humanos , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Animales , Radicales Libres/metabolismo , Ratones , Ratones Endogámicos C57BL
8.
J Immunol ; 186(11): 6585-96, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21525381

RESUMEN

Biofilms are complex communities of bacteria encased in a matrix composed primarily of polysaccharides, extracellular DNA, and protein. Staphylococcus aureus can form biofilm infections, which are often debilitating due to their chronicity and recalcitrance to antibiotic therapy. Currently, the immune mechanisms elicited during biofilm growth and their impact on bacterial clearance remain to be defined. We used a mouse model of catheter-associated biofilm infection to assess the functional importance of TLR2 and TLR9 in the host immune response during biofilm formation, because ligands for both receptors are present within the biofilm. Interestingly, neither TLR2 nor TLR9 impacted bacterial density or inflammatory mediator secretion during biofilm growth in vivo, suggesting that S. aureus biofilms circumvent these traditional bacterial recognition pathways. Several potential mechanisms were identified to account for biofilm evasion of innate immunity, including significant reductions in IL-1ß, TNF-α, CXCL2, and CCL2 expression during biofilm infection compared with the wound healing response elicited by sterile catheters, limited macrophage invasion into biofilms in vivo, and a skewing of the immune response away from a microbicidal phenotype as evidenced by decreases in inducible NO synthase expression concomitant with robust arginase-1 induction. Coculture studies of macrophages with S. aureus biofilms in vitro revealed that macrophages successful at biofilm invasion displayed limited phagocytosis and gene expression patterns reminiscent of alternatively activated M2 macrophages. Collectively, these findings demonstrate that S. aureus biofilms are capable of attenuating traditional host proinflammatory responses, which may explain why biofilm infections persist in an immunocompetent host.


Asunto(s)
Biopelículas , Inflamación/inmunología , Macrófagos/inmunología , Fagocitosis/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Animales , Infecciones Relacionadas con Catéteres/inmunología , Infecciones Relacionadas con Catéteres/metabolismo , Infecciones Relacionadas con Catéteres/microbiología , Citocinas/inmunología , Citocinas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune/inmunología , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica de Rastreo , Modelos Inmunológicos , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Staphylococcus aureus/ultraestructura , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunología
9.
Microbiol Spectr ; 11(6): e0229923, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37933971

RESUMEN

IMPORTANCE: Individuals with diabetes are prone to more frequent and severe infections, with many of these infections being polymicrobial. Polymicrobial infections are frequently observed in skin infections and in individuals with cystic fibrosis, as well as in indwelling device infections. Two bacteria frequently co-isolated from infections are Staphylococcus aureus and Pseudomonas aeruginosa. Several studies have examined the interactions between these microorganisms. The majority of these studies use in vitro model systems that cannot accurately replicate the microenvironment of diabetic infections. We employed a novel murine indwelling device model to examine interactions between S. aureus and P. aeruginosa. Our data show that competition between these bacteria results in reduced growth in a normal infection. In a diabetic infection, we observe increased growth of both microbes and more severe infection as both bacteria invade surrounding tissues. Our results demonstrate that diabetes changes the interaction between bacteria resulting in poor infection outcomes.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Infecciones por Pseudomonas , Infecciones Estafilocócicas , Humanos , Animales , Ratones , Staphylococcus aureus , Pseudomonas aeruginosa , Virulencia , Infecciones Estafilocócicas/microbiología , Infecciones por Pseudomonas/microbiología , Biopelículas
10.
Microbiol Spectr ; 10(4): e0206322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35862951

RESUMEN

Staphylococcus aureus is a human skin pathogen capable of causing invasive infections in many tissues in the human body. The host of virulence factors, such as toxins and proteases, available to S. aureus contribute to its diverse disease presentations. The majority of these virulence factors are under the control of the Agr quorum sensing system. The interaction between the Agr system and some well-established metabolic regulators has long been noted, but no mechanism has been provided as to these indirect interactions. In this study, we examine the connection between Agr and CcpA, a regulator of central carbon metabolism with a known positive impact on Agr function. We further investigated the interaction of Agr and CodY, a regulator of amino acid metabolism and a member of the stringent response with a known negative impact on Agr function. We show that though there are alterations in intracellular amino acid levels in each of these mutants that are consistent with their effect on Agr, there does not seem to be a direct impact on the translation of the Agr system itself that contributes to the altered expression observed in these mutants. Given the changes in cellular metabolism in a ΔccpA mutant, we find reduced levels of intracellular ATP even in the presence of glucose. This reduction in ATP, combined with the reduced affinity of the AgrC sensor kinase for ATP, explains the reduction in Agr activity long observed in ΔccpA strains. IMPORTANCE The human pathogen Staphylococcus aureus produces a great number of virulence factors that contribute to the pathogen's ability to cause dangerous, invasive infections. Understanding the full scope of the regulation of these virulence factors can provide us with new information about how to target virulence factor production. For years, researchers in the field have observed an impact of metabolic regulators on virulence factor production with no mechanistic explanation. Here, we describe the role of two of these regulators, CcpA and CodY, in virulence factor expression and provide evidence of indirect mechanisms contributing to the control of the Agr system and virulence factor production by these two metabolic regulators. Our study sheds light on the interplay between metabolism and virulence in S. aureus and provides an explanation as to how these concepts are linked.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Adenosina Trifosfato/metabolismo , Aminoácidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Percepción de Quorum , Staphylococcus aureus/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
11.
Infect Immun ; 78(11): 4936-43, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20713628

RESUMEN

The Gram-positive pathogen Enterococcus faecalis is a leading agent of nosocomial infections, including urinary tract infections, surgical site infections, and bacteremia. Among the infections caused by E. faecalis, endocarditis remains a serious clinical manifestation and unique in that it is commonly acquired in a community setting. Infective endocarditis is a complex disease, with many host and microbial components contributing to the formation of bacterial biofilm-like vegetations on the aortic valve and adjacent areas within the heart. In the current study, we compared the pathogenic potential of the vancomycin-resistant E. faecalis V583 and three isogenic protease mutants (ΔgelE, ΔsprE, and ΔgelE ΔsprE mutants) in a rabbit model of enterococcal endocarditis. The bacterial burdens displayed by GelE(-) mutants (ΔgelE and ΔgelE ΔsprE mutants) in the heart were significantly lower than those of V583 or the SprE(-) mutant. Vegetations on the aortic valve infected with GelE(-) mutants (ΔgelE and ΔgelE ΔsprE mutants) also showed a significant increase in deposition of fibrinous matrix layer and increased chemotaxis of inflammatory cells. In support of a role for proteolytic modulation of the immune response to E. faecalis, we also demonstrate that GelE can cleave the anaphylatoxin complement C5a and that this proteolysis leads to decreased neutrophil migration in vitro. In vivo, a decreased heterophil (neutrophil-like cell) migration was observed at tissue sites infected with GelE-producing strains but not at those infected with SprE-producing strains. Taken together, these observations suggest that of the two enterococcal proteases, gelatinase is the principal mediator of pathogenesis in endocarditis.


Asunto(s)
Endocarditis Bacteriana/patología , Enterococcus faecalis/patogenicidad , Gelatinasas/metabolismo , Infecciones por Bacterias Grampositivas/patología , Animales , Válvula Aórtica/microbiología , Válvula Aórtica/patología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Complemento C5a/metabolismo , Endocarditis Bacteriana/microbiología , Enterococcus faecalis/enzimología , Enterococcus faecalis/genética , Gelatinasas/genética , Infecciones por Bacterias Grampositivas/microbiología , Células HL-60 , Humanos , Mutación , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Conejos
12.
Sci Adv ; 6(46)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33188027

RESUMEN

Elevated blood/tissue glucose is a hallmark feature of advanced diabetes, and people with diabetes are prone to more frequent and invasive infections with Staphylococcus aureus. Phagocytes must markedly increase glucose consumption during infection to generate and oxidative burst and kill invading bacteria. Similarly, glucose is essential for S. aureus survival in an infection and competition with the host, for this limited resource is reminiscent of nutritional immunity. Here, we show that infiltrating phagocytes do not express their high-efficiency glucose transporters in modeled diabetic infections, resulting in a diminished respiratory burst and increased glucose availability for S. aureus We show that excess glucose in these hyperglycemic abscesses significantly enhances S. aureus virulence potential, resulting in worse infection outcomes. Last, we show that two glucose transporters recently acquired by S. aureus are essential for excess virulence factor production and the concomitant increase in disease severity in hyperglycemic infections.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Infecciones Estafilocócicas , Glucosa , Humanos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus , Virulencia
13.
J Bacteriol ; 191(20): 6203-10, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19684130

RESUMEN

Many bacterial species produce capsular polysaccharides that contribute to pathogenesis through evasion of the host innate immune system. The gram-positive pathogen Enterococcus faecalis was previously reported to produce one of four capsule serotypes (A, B, C, or D). Previous studies describing the four capsule serotypes of E. faecalis were based on immunodetection methods; however, the underlying genetics of capsule production did not fully support these findings. Previously, it was shown that capsule production for serotype C (Maekawa type 2) was dependent on the presence of nine open reading frames (cpsC to cpsK). Using a novel genetic system, we demonstrated that seven of the nine genes in the cps operon are essential for capsule production, indicating that serotypes A and B do not make a capsular polysaccharide. In support of this observation, we showed that serotype C and D capsule polysaccharides mask lipoteichoic acid from detection by agglutinating antibodies. Furthermore, we determined that the genetic basis for the difference in antigenicity between serotypes C and D is the presence of cpsF in serotype C strains. High-pH anion-exchange chromatography with pulsed amperometric detection analysis of serotype C and D capsules indicated that cpsF is responsible for glucosylation of serotype C capsular polysaccharide in E. faecalis.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Polisacáridos Bacterianos/biosíntesis , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Hidratos de Carbono/fisiología , Enterococcus faecalis/clasificación , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología , Immunoblotting , Operón , Serotipificación
14.
Infect Immun ; 77(12): 5551-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19805541

RESUMEN

It has become increasingly difficult to treat infections caused by Enterococcus faecalis due to its high levels of intrinsic and acquired antibiotic resistance. However, few studies have explored the mechanisms that E. faecalis employs to circumvent the host innate immune response and establish infection. Capsular polysaccharides are important virulence factors that are associated with innate immune evasion. We demonstrate, using cultured macrophages (RAW 264.7), that capsule-producing E. faecalis strains of either serotype C or D are more resistant to complement-mediated opsonophagocytosis than unencapsulated strains. We show that differences in opsonophagocytosis are not due to variations in C3 deposition but are due to the ability of capsule to mask bound C3 from detection on the surface of E. faecalis. Similarly, E. faecalis capsule masks lipoteichoic acid from detection, which correlates with decreased tumor necrosis factor alpha production by cultured macrophages in the presence of encapsulated strains compared to that in the presence of unencapsulated strains. Our studies confirm the important role of the capsule as a virulence factor of E. faecalis and provide several mechanisms by which the presence of the capsule influences evasion of the innate immune response and suggest that the capsule could be a potential target for developing alternative therapies to treat E. faecalis infections.


Asunto(s)
Cápsulas Bacterianas/inmunología , Cápsulas Bacterianas/fisiología , Enterococcus faecalis/inmunología , Enterococcus faecalis/patogenicidad , Factores de Virulencia/inmunología , Factores de Virulencia/fisiología , Animales , Línea Celular , Complemento C3/inmunología , Complemento C3/metabolismo , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Proteínas Opsoninas/inmunología , Fagocitosis/inmunología , Unión Proteica , Ácidos Teicoicos/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
15.
J Bacteriol ; 190(16): 5690-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18556793

RESUMEN

Enterococci are major contributors of hospital-acquired infections and have emerged as important reservoirs for the dissemination of antibiotic resistance traits. The ability to form biofilms on medical devices is an important aspect of pathogenesis in the hospital environment. The Enterococcus faecalis Fsr quorum system has been shown to regulate biofilm formation through the production of gelatinase, but the mechanism has been hitherto unknown. Here we show that both gelatinase (GelE) and serine protease (SprE) contribute to biofilm formation by E. faecalis and provide clues to how the activity of these proteases governs this developmental process. Confocal imaging of biofilms suggested that GelE(-) mutants were significantly reduced in biofilm biomass compared to the parental strain, whereas the absence of SprE appeared to accelerate the progression of biofilm development. The phenotype observed in a SprE(-) mutant was linked to an observed increase in autolytic rate compared to the parental strain. Culture supernatant analysis and confocal microscopy confirmed the inability of mutants deficient in GelE to release extracellular DNA (eDNA) in planktonic and biofilm cultures, whereas cells deficient in SprE produced significantly more eDNA as a component of the biofilm matrix. DNase I treatment of E. faecalis biofilms reduced the accumulation of biofilm, implying a critical role for eDNA in biofilm development. In conclusion, our data suggest that the interplay of two secreted and coregulated proteases--GelE and SprE--is responsible for regulating autolysis and the release of high-molecular-weight eDNA, a critical component for the development of E. faecalis biofilms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriólisis , Biopelículas/crecimiento & desarrollo , ADN Bacteriano/metabolismo , Enterococcus faecalis/fisiología , Gelatinasas/metabolismo , Serina Endopeptidasas/metabolismo , Biomasa , Desoxirribonucleasa I/metabolismo , Gelatinasas/genética , Eliminación de Gen , Orden Génico , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Confocal , Serina Endopeptidasas/genética
16.
Cell Host Microbe ; 24(2): 261-270.e4, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30057172

RESUMEN

Skin/soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) represent serious healthcare burdens worldwide. The host initially controls these infections with a pro-inflammatory infiltrate. However, once established, MRSA viability remains constant. To clear established MRSA SSTIs, the host must transition into the post-inflammatory resolution phase marked by infiltration of alternatively activated macrophages. Here we show that the host nuclear receptor, peroxisome proliferation activator receptor γ (PPARγ), is essential for this transition and MRSA clearance. Chemical PPARγ inhibition or genetic ablation of PPARγ in myeloid cells results in an extended inflammatory phase and exacerbated MRSA SSTIs. Conversely, treating mice with PPARγ agonists hastens the onset of the resolution phase and improves MRSA clearance in a myeloid-dependent fashion. The resolving fibrotic abscess lacks abundant glucose and oxygen but is replete with antimicrobial peptides, which together contribute to MRSA clearance. Thus, PPARγ agonists may serve as viable treatment options for complicated MRSA SSTIs.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , PPAR gamma/inmunología , Infecciones Cutáneas Estafilocócicas/etiología , Absceso/tratamiento farmacológico , Absceso/etiología , Animales , Femenino , Glucosa/metabolismo , Masculino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Staphylococcus aureus Resistente a Meticilina/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , PPAR gamma/agonistas , PPAR gamma/genética , PPAR gamma/metabolismo , Rosiglitazona/farmacología , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico
17.
mBio ; 8(6)2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29138302

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4+ T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication.IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence of related alphaviruses in mammalian and mosquito hosts. Here, we report that a clinical isolate of a CHIKV strain from the recent outbreak in the Caribbean islands contains a mixture of viruses encoding either the opal termination codon or an arginine mutation. Mutating the opal stop codon to an arginine residue attenuates CHIKV-induced disease in a mouse model. Compared to infection with the opal-containing parental virus, infection with the arginine mutant causes limited swelling and inflammation, as well as dampened recruitment of immune mediators of pathology, including CD4+ T cells and NK cells. We propose that the opal termination codon plays an essential role in the induction of severe CHIKV disease.


Asunto(s)
Artritis/patología , Fiebre Chikungunya/patología , Virus Chikungunya/patogenicidad , Codón de Terminación , Mutación , Proteínas no Estructurales Virales/genética , Factores de Virulencia/genética , Animales , Arginina/genética , Artritis/virología , Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Modelos Animales de Enfermedad , Ratones , Replicación Viral
18.
Cell Host Microbe ; 13(1): 100-7, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23332159

RESUMEN

The USA300 community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) lineage causes the majority of skin and soft tissue infections (SSTIs) and is highly associated with the carriage of the arginine catabolic mobile element (ACME). However, the contribution of ACME to USA300's success in SSTIs is not completely understood. We show that the constitutive ACME-encoded arginine-deiminase system (Arc) allows USA300 to thrive in acidic environments that mimic human skin. Consequently, the ACME-Arc system drives excessive production of host polyamines, compounds uniquely toxic to S. aureus. To mitigate this, ACME also encodes SpeG, a polyamine-resistance enzyme that is essential for combating excess host polyamines in a murine SSTI model. Inhibiting host polyamine production not only restored ΔspeG persistence within infected wounds but also severely altered the host healing process, implying that polyamines play an integral role in coordinating the wound-healing response. Together, these data underscore the functional modularity of ACME and its contribution to the success of USA300 CA-MRSA.


Asunto(s)
Elementos Transponibles de ADN , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/microbiología , Animales , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Interacciones Huésped-Patógeno , Humanos , Hidrolasas/genética , Hidrolasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/fisiología , Ratones , Ratones Endogámicos C57BL , Poliaminas/metabolismo , Infecciones Estafilocócicas/metabolismo
19.
FEMS Immunol Med Microbiol ; 65(1): 5-22, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22309135

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious threat to worldwide health. Historically, MRSA clones have strictly been associated with hospital settings, and most hospital-associated MRSA (HA-MRSA) disease resulted from a limited number of virulent clones. Recently, MRSA has spread into the community causing disease in otherwise healthy people with no discernible contact with healthcare environments. These community-associated MRSA clones (CA-MRSA) are phylogenetically distinct from traditional HA-MRSA clones, and CA-MRSA strains seem to exhibit hypervirulence and more efficient host : host transmission. Consequently, CA-MRSA clones belonging to the USA300 lineage have become dominant sources of MRSA infections in North America. The rise of this successful USA300 lineage represents an important step in the evolution of emerging pathogens and a great deal of effort has been exerted to understand how these clones evolved. Here, we review much of the recent literature aimed at illuminating the source of USA300 success and broadly categorize these findings into three main categories: newly acquired virulence genes, altered expression of common virulence determinants and alterations in protein sequence that increase fitness. We argue that none of these evolutionary events alone account for the success of USA300, but rather their combination may be responsible for the rise and spread of CA-MRSA.


Asunto(s)
Infecciones Comunitarias Adquiridas/microbiología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Infecciones Estafilocócicas/microbiología , Factores de Virulencia/metabolismo , Infecciones Comunitarias Adquiridas/epidemiología , Evolución Molecular , Genotipo , Humanos , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/genética , América del Norte/epidemiología , Infecciones Estafilocócicas/epidemiología , Virulencia , Factores de Virulencia/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-22919585

RESUMEN

Staphylococcus aureus is an important human pathogen commonly infecting nearly every host tissue. The ability of S. aureus to resist innate immunity is critical to its success as a pathogen, including its propensity to grow in the presence of host nitric oxide (NO·). Upon exogenous NO· exposure, S. aureus immediately excretes copious amounts of L-lactate to maintain redox balance. However, after prolonged NO·-exposure, S. aureus reassimilates L-lactate specifically and in this work, we identify the enzyme responsible for this L-lactate-consumption as a L-lactate-quinone oxidoreductase (Lqo, SACOL2623). Originally annotated as Mqo2 and thought to oxidize malate, we show that this enzyme exhibits no affinity for malate but reacts specifically with L-lactate (K(M) = ∼330 µM). In addition to its requirement for reassimilation of L-lactate during NO·-stress, Lqo is also critical to respiratory growth on L-lactate as a sole carbon source. Moreover, Δlqo mutants exhibit attenuation in a murine model of sepsis, particularly in their ability to cause myocarditis. Interestingly, this cardiac-specific attenuation is completely abrogated in mice unable to synthesize inflammatory NO· (iNOS(-/-)). We demonstrate that S. aureus NO·-resistance is highly dependent on the availability of a glycolytic carbon sources. However, S. aureus can utilize the combination of peptides and L-lactate as carbon sources during NO·-stress in an Lqo-dependent fashion. Murine cardiac tissue has markedly high levels of L-lactate in comparison to renal or hepatic tissue consistent with the NO·-dependent requirement for Lqo in S. aureus myocarditis. Thus, Lqo provides S. aureus with yet another means of replicating in the presence of host NO·.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácido Láctico/metabolismo , Oxidorreductasas/metabolismo , Infecciones Estafilocócicas/etiología , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidad , Animales , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Genes Bacterianos , Interacciones Huésped-Patógeno/fisiología , Humanos , Ratones , Ratones Noqueados , Mutación , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/genética , Oxidorreductasas/genética , Sepsis/etiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Virulencia/genética , Virulencia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA