Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202408581, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012206

RESUMEN

A first example of a mitochondrial G-quadruplex (mitoG4s) targeted Ru(II) photooxidant complex is reported. The complex, Ru-TAP-PDC3 induces photodamage toward guanine quadruplexes (G4s) located in the mitochondrial genome under hypoxic and normoxic conditions. Ru-TAP-PDC3 shows high affinity for mitoG4s and localises within mitochondria of live HeLa cells. Immunolabelling with anti-G4 antibody, BG4, confirms Ru-TAP-PDC3 associates with G4s within the mitochondria of fixed cells. The complex induces depletion of mtDNA in live cells under irradiation at 405 nm, confirmed by loss of PicoGreen signal from mitochondria. Biochemical studies confirm this process induces apoptosis. The complex shows low dark toxicity and an impressive phototoxicity index (PI) of >89 was determined in Hela under very low intensity irradiation, 5 J/cm2. The phototoxicity is thought to operate through both Type II singlet oxygen and Type III pathways depending on normoxic or hypoxic conditions from live cell imaging and plasmid DNA cleavage. Overall, we demonstrate targeting mitoG4s and mtDNA with a photooxidant is a potent route to achieving apoptosis under hypoxic conditions that can be extended to phototherapy.

2.
Chemistry ; 29(24): e202300224, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36807947

RESUMEN

BODIPY-based donor-acceptor dyads are widely used as sensors and probes in life science. Thus, their biophysical properties are well established in solution, while their photophysical properties in cellulo, i. e., in the environment, in which the dyes are designed to function, are generally understood less. To address this issue, we present a sub-ns time-resolved transient absorption study of the excited-state dynamics of a BODIPY-perylene dyad designed as a twisted intramolecular charge transfer (TICT) probe of the local viscosity in live cells.

3.
Chemistry ; 29(24): e202300239, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36802283

RESUMEN

BODIPY heterochromophores, asymmetrically substituted with perylene and/or iodine at the 2 and 6 positions were prepared and investigated as sensitizers for triplet-triplet annihilation up conversion (TTA-UC). Single-crystal X-ray crystallographic analyses show that the torsion angle between BODIPY and perylene units lie between 73.54 and 74.51, though they are not orthogonal. Both compounds show intense, charge transfer absorption and emission profiles, confirmed by resonance Raman spectroscopy and consistent with DFT calculations. The emission quantum yield was solvent dependent but the emission profile remained characteristic of CT transition across all solvents explored. Both BODIPY derivatives were found to be effective sensitizers of TTA-UC with perylene annihilator in dioxane and DMSO. Intense anti-Stokes emission was observed, and visible by eye from these solvents. Conversely, no TTA-UC was observed from the other solvents explored, including from non-polar solvents such as toluene and hexane that yielded brightest fluorescence from the BODIPY derivatives. In dioxane, the power density plots obtained were strongly consistent with TTA-UC and the power density threshold, the Ith value (the photon flux at which 50 % of ΦTTAUC is achieved), for B2PI was observed to be 2.5x lower than of B2P under optimal conditions, an effect ascribed to the combined influence of spin-orbit charge transfer intersystem crossing (SOCT-ISC) and heavy metal on the triplet state formation for B2PI.

4.
Inorg Chem ; 62(5): 2213-2227, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36703307

RESUMEN

Sensors capable of transducing G-quadruplex DNA binding are important both in solution and for imaging and interrogation in cellulo. Ru(II)-based light switches incorporating dipyridylphenazine (dppz) ligands are effective probes for recognition and imaging of DNA and its polymorphs including G-quadruplex, although selectivity is a limitation. While the majority of Ru(II)-based light switches reported to date, stabilize the quadruplex, imaging/theranostic probes that can disrupt G4s are of potentially enormous value in study and therapy for a range of disease states. We report here, on a Ru(II) complex (Ru-PDC3) that assembles the light switch capability of a Ru(II) dipyridylphenazine complex with the well-known G4-selective ligand Phen-DC3, into a single structure. The complex shows the anticipated light switch effect and strong affinity for G4 structures. Affinity depended on the G4 topology and sequence, but across all structures bar one, it was roughly an order of magnitude greater than for duplex or single-stranded DNA. Moreover, photophysical and Raman spectral data showed clear discrimination between duplex DNA and G4-bound structures offering the prospect of discrimination in imaging as well as in solution. Crucially, unlike the constituent components of the probe, Ru-PDC3 is a powerful G4 disrupter. From circular dichroism (CD), a reduction of ellipticity of the G4 between 70 and 95% was observed depending on topology and in many cases was accompanied by an induced CD signal for the metal complex. The extent of change in ellipticity is amongst the largest reported for small-molecule ligand G4 binding. While a promising G4 probe, without modification, the complex is fully water-soluble and readily permeable to live cells.


Asunto(s)
Complejos de Coordinación , G-Cuádruplex , Ligandos , ADN/química , Complejos de Coordinación/química , Luminiscencia
5.
Inorg Chem ; 62(32): 13089-13102, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37535942

RESUMEN

Tridentate ligand-coordinated ruthenium (II) polypyridyl complexes with large N-Ru-N bite angles have been shown to promote ligand field splitting and reduce singlet-triplet state mixing leading to dramatically extended emission quantum yields and lifetimes under ambient conditions. These effects are anticipated to enhance their photoinduced singlet oxygen production, promoting prospects for such complexes as type II phototherapeutics. In this contribution, we examined this putative effect for [Ru(bqp)(bqpCOOEt)]2+, Ru-bqp-ester, a heteroleptic complex containing bqp = [2,6-bi(quinolin-8-yl)pyridine], a well-established large bite angle tridentate ligand, as well as its peptide conjugates [Ru(bqp)(bqpCONH-ahx-FrFKFrFK(Ac)-CONH2)]5+ (Ru-bqp-MPP) and [Ru(bqp) (bqp)(CONH-ahx-RRRRRRRR-CONH2)]10+ (Ru-bqp-R8) that were prepared in an effort to promote live cell/tissue permeability and targeting of the parent. Membrane permeability of both parent and peptide conjugates were compared across 2D cell monolayers; A549, Chinese hamster ovary, human pancreatic cancer (HPAC), and 3D HPAC multicellular tumor spheroids (MCTS) using confocal microscopy. Both the parent complex and peptide conjugates showed exceptional permeability with rapid uptake in both 2D and 3D cell models but with little distinction in permeability or distribution in cells between the parent or peptide conjugates. Unexpectedly, the uptake was temperature independent and so attributed to passive permeation. Both dark and photo-toxicity of the Ru(II) complexes were assessed across cell types, and the parent showed notably low dark toxicity. In contrast, the parent and conjugates were found to be highly phototoxic, with impressive phototoxic indices (PIs) toward HPAC cell monolayers in particular, with PI values ranging from ∼580 to 760. Overall, our data indicate that the Ru(II) parent complex and its peptide conjugates show promise at both cell monolayers and 3D MCTS as photosensitizers for photodynamic therapy.


Asunto(s)
Complejos de Coordinación , Neoplasias , Fotoquimioterapia , Rutenio , Animales , Cricetinae , Humanos , Células CHO , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cricetulus , Ligandos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Rutenio/química , Rutenio/farmacología
6.
Phys Chem Chem Phys ; 25(11): 7648-7661, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36317678

RESUMEN

Amyloid-beta (Aß1-42) aggregation triggers neurotoxicity and is linked to Alzheimer's disease. Aß1-42 oligomers, rather than extended fibrils, adhere to the cell membrane, causing cell death. Phosphatidylserine (PS), an anionic phospholipid, is prevalent in neuronal membranes (< 20 molar percentage) and, while isolated to the cytoplasmic leaflet of the membrane in healthy cells, its exposure in apoptotic cells and migration to exoplasmic leaflet is triggered by oxidative damage to the membrane. It is widely believed that PS plays a crucial role in the Aß peptide interaction in the membranes of neuronal cells. However, due to the complexity of the cell membrane, it can be challenging to address molecular level understanding of the PS-Aß binding and oligomerization processes. Herein, we use microcavity supported lipid bilayers (MSLBs) to analyse PS and Aß1-42 binding, oligomer formation, and membrane damage. MSLBs are a useful model to evaluate protein-membrane interactions because of their cell-like dual aspect fluidity, their addressability and compositional versatility. We used electrochemical impedance spectroscopy (EIS) and confocal fluorescence microscopy to compare the impact of Aß1-42 on simple zwitterioinic membrane, dioleoylphosphatidylcholine (DOPC), with MSLBs comprised of transversally asymmetric binary DOPC and dioleoylphosphatidylserine (DOPS). Monomeric Aß1-42 adsorbs weakly to the pristine zwitterionic DOPC membrane without aggregation. Using a membrane integrity test, with pyranine trapped within the cavities beneath the membrane, Aß1-42 exposure did not result in pyranine leakage, indicating that DOPC membranes were intact. When 10 mol% DOPS was doped asymmetrically into the membrane's outer leaflet, oligomerization of Aß1-42 monomer was evident in EIS and atomic force microscopy (AFM), and confocal imaging revealed that membrane damage, resulted in extensive pyranine leakage from the pores. The effects were time, and DOPS and Aß1-42 concentration-dependent. Membrane pore formation was visible within 30 minutes, and oligomerization, membrane-oligomer multilayer, and Aß1-42 fibril formation evident over 3 to 18 hours. In asymmetric membranes with DOPS localized to the lower leaflet, optothermally (laser induced) damage increased local DOPS concentrations at the distal leaflet, promoting Aß1-42 aggregation.


Asunto(s)
Fosfatidilserinas , Fosfolípidos , Péptidos beta-Amiloides/química , Arilsulfonatos , Membrana Dobles de Lípidos/química
7.
Mikrochim Acta ; 190(8): 332, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500736

RESUMEN

Astaxanthin (AXT) is a lipophilic antioxidant and anti-inflammatory natural pigment whose cellular uptake and bioavailability could be improved via liposomal encapsulation. Endothelial cells (EC) line the lumen of all blood vessels and are tasked with multiple roles toward maintaining cardiovascular homeostasis. Endothelial dysfunction is linked to the development of many diseases and is closely interconnected with oxidative stress and vascular inflammation. The uptake of free and liposomal AXT into EC was investigated using Raman and fluorescence microscopies. AXT was either encapsulated in neutral or cationic liposomes. Enhanced uptake and anti-inflammatory effects of liposomal AXT were observed. The anti-inflammatory effects of liposomal AXT were especially prominent in reducing EC lipid unsaturation, lowering numbers of lipid droplets (LDs), and decreasing intercellular adhesion molecule 1 (ICAM-1) overexpression, which is considered a well-known marker for endothelial inflammation. These findings highlight the benefits of AXT liposomal encapsulation on EC and the applicability of Raman imaging to investigate such effects.


Asunto(s)
Células Endoteliales , Liposomas , Humanos , Inflamación/tratamiento farmacológico , Imagen Óptica
8.
J Child Sex Abus ; 32(1): 74-90, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36617737

RESUMEN

We investigated the longitudinal effects of the Second Step Child Protection Unit (CPU; Committee for Children) on student outcomes through a randomized controlled trial. Eight schools with a total sample including 2,031 students were assigned randomly to the CPU intervention or the wait-list control condition. We employed a multi-process latent growth model using a structural equation modeling framework which simultaneously analyzed student outcome growth via the effects of the intervention. The moderating effect of gender was also included. Over four data collection waves (pretest, posttest, follow-up [6 months] and follow-up [12-months]), the intervention group students were better able to recognize appropriate requests in CSA scenarios than control group students over time. Teacher-student relations improved for the students in the intervention schools but worsened for the students in the control schools over time. Despite concerns that CSA prevention programs may result in the unintended consequence of making children more fearful, children in both conditions did not show increased fears over time. The longitudinal effect on CSA recognition was more pronounced among girls, who suffer from higher CSA prevalence, compared with boys. Implications for prevention, policy, and directions for future research are discussed.


Asunto(s)
Abuso Sexual Infantil , Personal Docente , Masculino , Femenino , Humanos , Niño , Abuso Sexual Infantil/prevención & control , Estudiantes , Familia , Instituciones Académicas
9.
Langmuir ; 38(20): 6411-6424, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35561255

RESUMEN

Quinacrine is a versatile drug that is widely recognized for its antimalarial action through its inhibition of the phospholipase enzyme. It also has antianthelmintic and antiprotozoan activities and is a strong DNA binder that may be used to combat multidrug resistance in cancer. Despite extensive cell-based studies, a detailed understanding of quinacrine's influence on the cell membrane, including permeability, binding, and rearrangement at the molecular level, is lacking. Herein, we apply microcavity-suspended lipid bilayers (MSLBs) as in vitro models of the cell membrane comprising DOPC, DOPC:Chol(3:1), and DOPC:SM:Chol(2:2:1) to investigate the influence of cholesterol and intrinsic phase heterogeneity induced by mixed-lipid composition on the membrane interactions of quinacrine. Using electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS) as label-free surface-sensitive techniques, we have studied quinacrine interaction and permeability across the different MSLBs. Our EIS data reveal that the drug is permeable through ternary DOPC:SM:Chol and DOPC-only bilayer compositions. In contrast, the binary cholesterol/DOPC membrane arrested permeation, yet the drug binds or intercalates at this membrane as reflected by an increase in membrane impedance. SERS supported the EIS data, which was utilized to gain structural insights into the drug-membrane interaction. Our SERS data also provides a simple but powerful label-free assessment of drug permeation because a significant SERS enhancement of the drug's Raman signature was observed only if the drug accessed the plasmonic interior of the pore cavity passing through the membrane. Fluorescent lifetime correlation spectroscopy (FLCS) provides further biophysical insight, revealing that quinacrine binding increases the lipid diffusivity of DOPC and the ternary membrane while remarkably decreasing the lipid diffusivity of the DOPC:Chol membrane. Overall, because of its adaptability to multimodal approaches, the MSLB platform provides rich and detailed insights into drug-membrane interactions, making it a powerful tool for in vitro drug screening.


Asunto(s)
Membrana Dobles de Lípidos , Quinacrina , Membrana Celular/metabolismo , Colesterol/química , Espectroscopía Dieléctrica , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Quinacrina/farmacología
10.
Small ; 17(12): e2005815, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33634594

RESUMEN

A powerful new biophysical model is reported to assay nanocarrier lipid membrane permeability. The approach employs a nanophotonic biophysical membrane model as an assay to study oligonucleotide escape from delivery vector following fusion with endosomal membrane that relies on plasmonic hotspots within the receptor well, below the membrane to follow cargo arrival. Through the combined use of surface enhanced Raman spectroscopy and fluorescence lifetime correlation spectroscopy (FLCS), the model enables identification of a lipoplex-mediated endosomal-escape mechanism facilitated by DOTAP-oligonucleotide interaction that dictates the rate of oligonucleotide release. This work reveals a hitherto unreported release mechanism as a complex multistep interplay between the oligonucleotide cargo and the target membrane, rather than a process based solely on lipid mixing at the fusing site as previously proposed. This substantiates the observations that lipid mixing is not necessarily followed by cargo release. The approach presents a new paradigm for assessment of vector delivery at model membranes that promises to have wide application within the drug delivery design application space. Overall, this plasmonic membrane model offers a potential solution to address persistent challenges in engineering the release mechanism of large therapeutic molecules from their nanocarrier, which is a major bottleneck in intracellular delivery.


Asunto(s)
Liposomas , Oligonucleótidos , Cationes , ADN , Lípidos
11.
Chemistry ; 27(68): 17203-17212, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34726811

RESUMEN

Covalent functionalisation with alkyl tails is a common method for supporting molecular catalysts and photosensitisers onto lipid bilayers, but the influence of the alkyl chain length on the photocatalytic performances of the resulting liposomes is not well understood. In this work, we first prepared a series of rhenium-based CO2 -reduction catalysts [Re(4,4'-(Cn H2n+1 )2 -bpy)(CO)3 Cl] (ReCn ; 4,4'-(Cn H2n+1 )2 -bpy=4,4'-dialkyl-2,2'-bipyridine) and ruthenium-based photosensitisers [Ru(bpy)2 (4,4'-(Cn H2n+1 )2 -bpy)](PF6 )2 (RuCn ) with different alkyl chain lengths (n=0, 9, 12, 15, 17, and 19). We then prepared a series of PEGylated DPPC liposomes containing RuCn and ReCn , hereafter noted Cn , to perform photocatalytic CO2 reduction in the presence of sodium ascorbate. The photocatalytic performance of the Cn liposomes was found to depend on the alkyl tail length, as the turnover number for CO (TON) was inversely correlated to the alkyl chain length, with a more than fivefold higher CO production (TON=14.5) for the C9 liposomes, compared to C19 (TON=2.8). Based on immobilisation efficiency quantification, diffusion kinetics, and time-resolved spectroscopy, we identified the main reason for this trend: two types of membrane-bound RuCn species can be found in the membrane, either deeply buried in the bilayer and diffusing slowly, or less buried with much faster diffusion kinetics. Our data suggest that the higher photocatalytic performance of the C9 system is due to the higher fraction of the more mobile and less buried molecular species, which leads to enhanced electron transfer kinetics between RuC9 and ReC9 .


Asunto(s)
Liposomas , Compuestos Organometálicos , Dióxido de Carbono , Electrones , Cinética
12.
Inorg Chem ; 60(11): 8123-8134, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33978399

RESUMEN

The preparation of two polyarginine conjugates of the complex Os(II) [bis-(4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine)] [Os-(Rn)2]x+ (n = 4 and 8; x = 10 and 18) is reported, to explore whether the R8 peptide sequence that promotes cell uptake requires a contiguous amino acid sequence for membrane permeation or if this can be accomplished in a linearly bridged structure with the additive effect of shorter peptide sequences. The conjugates exhibit NIR emission centered at 754 nm and essentially oxygen-insensitive emission with a lifetime of 89 ns in phosphate-buffered saline. The uptake, distribution, and cytotoxicity of the parent complex and peptide derivatives were compared in 2D cell monolayers and a three-dimensional (3D) multicellular tumor spheroid (MCTS) model. Whereas, the bis-octaarginine sequences were impermeable to cells and spheroids, and the bis-tetraarginine conjugate showed excellent cellular uptake and accumulation in two 2D monolayer cell lines and remarkable in-depth penetration of 3D MCTSs of pancreatic cancer cells. Overall, the data indicates that cell permeability can be promoted via non-contiguous sequences of arginine residues bridged across the metal centre.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Osmio/farmacología , Péptidos/farmacología , Esferoides Celulares/efectos de los fármacos , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cricetulus , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Imagen Óptica , Osmio/química , Péptidos/química
13.
Phys Chem Chem Phys ; 23(46): 26324-26335, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34787616

RESUMEN

The radiative emission lifetime and associated S1 excited state properties of a BODIPY dye are investigated with TDDFT and EOM-CCSD calculations. The effects of a solvent are described with the polarizable continuum model using the linear response (LR) approach as well as state-specific methods. The Franck-Condon (FC), Herzberg-Teller (HT) and Duschinsky vibronic effects are evaluated for the absorption and emission spectra, and for the radiative lifetime. The transition energies, spectra shapes and radiative lifetime are assessed with respect to experimental results. It is found that the TDDFT transition energies are overestimated by about 0.4-0.5 eV, whereas EOM-CCSD improves the vertical emission energy by about 0.1 eV in comparison to TDDFT. The solvatochromic and Stokes shifts are better reproduced by the state-specific solvation methods, which show that these methods are more suited than the LR model to describe the solvent effects on the BODIPY dye. The vibronic effects lead to an increase of the radiative lifetime of about 0.4 to 1.0 ns depending on the theoretical approach, which highlights the importance of such effects. Moreover, the HT effects are negligible on both the spectra and lifetime, which demonstrates that the FC approximation is accurate for the BODIPY dye. Finally, the comparison with experimental data shows that the radiative lifetimes predicted by EOM-CCSD and TDDFT have comparable accuracy.

14.
Langmuir ; 36(19): 5454-5465, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32326703

RESUMEN

Annexins are soluble membrane-binding proteins that associate in a calcium dependent manner with anionic phospholipids. They play roles in membrane organization, signaling and vesicle transport and in several disease states including thrombosis and inflammation. Annexin V is believed to be involved in membrane repair. Mediated through binding to phosphatidylserine exposed at damaged plasma membrane, the protein forms crystalline networks that seal or stabilize small membrane tears. Herein, we model this biochemical mechanism to simulate membrane healing at microcavity array supported, transversally asymmetric, lipid bilayers (MSLBs) comprising 1,2-dioleoylsn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS). Varying annexin V concentration, lipid composition, and DOPS presence at each leaflet, fluorescence imaging and correlation spectroscopy confirmed that when DOPS was present at the external, annexin V, contacting leaflet, the protein assembled rapidly at the membrane interface to form a layer. From electrochemical impedance studies, the annexin layer decreased membrane capacitance while reducing resistance. With DOPS incorporated only at the lower (proximal) leaflet, no appreciable annexin assembly was observed over the first 21 h. This suggests that membrane asymmetry is preserved over this window and transversal diffusion of DOPS is slow. Intense laser light applied to the membrane, in which DOPS is initially isolated at the lower leaflet, was found to simulate membrane damage, stimulating the rapid assembly of annexin V at the membrane interface confirmed by fluorescence imaging, correlation spectroscopy, and electrochemical impedance measurements. The damage induced by light increased impedance and decreased membrane resistance. The resulting bilayer annexin V patched bilayer showed better temporal stability toward impedance changes when compared with that of the parent membrane. In summary, this simple model of annexin V assembly in a fluidic lipid membrane provides new insights into the assembly of annexins as well as an empirical basis for building patch-repair mechanisms into interfacial bilayer membrane assemblies.

15.
Langmuir ; 35(24): 8095-8109, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31120755

RESUMEN

Many drugs have intracellular or membrane-associated targets, thus understanding their interaction with the cell membrane is of value in drug development. Cell-free tools used to predict membrane interactions should replicate the molecular organization of the membrane. Microcavity array-supported lipid bilayer (MSLB) platforms are versatile biophysical models of the cell membrane that combine liposome-like membrane fluidity with stability and addressability. We used an MSLB herein to interrogate drug-membrane interactions across seven drugs from different classes, including nonsteroidal anti-inflammatories: ibuprofen (Ibu) and diclofenac (Dic); antibiotics: rifampicin (Rif), levofloxacin (Levo), and pefloxacin (Pef); and bisphosphonates: alendronate (Ale) and clodronate (Clo). Fluorescence lifetime correlation spectroscopy (FLCS) and electrochemical impedance spectroscopy (EIS) were used to evaluate the impact of drug on 1,2-dioleyl- sn-glycerophosphocholine and binary bilayers over physiologically relevant drug concentrations. Although FLCS data revealed Ibu, Levo, Pef, Ale, and Clo had no impact on lipid lateral mobility, EIS, which is more sensitive to membrane structural change, indicated modest but significant decreases to membrane resistivity consistent with adsorption but weak penetration of drugs at the membrane. Ale and Clo, evaluated at pH 5.25, did not impact the impedance of the membrane except at concentrations exceeding 4 mM. Conversely, Dic and Rif dramatically altered bilayer fluidity, suggesting their translocation through the bilayer, and EIS data showed that resistivity of the membrane decreased substantially with increasing drug concentration. Capacitance changes to the bilayer in most cases were insignificant. Using a Langmuir-Freundlich model to fit the EIS data, we propose Rsat as an empirical value that reflects permeation. Overall, the data indicate that Ibu, Levo, and Pef adsorb at the interface of the lipid membrane but Dic and Rif interact strongly, permeating the membrane core modifying the water/ion permeability of the bilayer structure. These observations are discussed in the context of previously reported data on drug permeability and log P.


Asunto(s)
Espectroscopía Dieléctrica/métodos , Membrana Dobles de Lípidos/química , Espectrometría de Fluorescencia/métodos , Alendronato/química , Ácido Clodrónico/química , Diclofenaco/química , Impedancia Eléctrica , Ibuprofeno/química , Levofloxacino/química , Pefloxacina/química , Rifampin/química
16.
Analyst ; 144(5): 1608-1621, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30631867

RESUMEN

Lipid droplets are dynamic subcellular organelles that participate in a range of physiological processes including metabolism, regulation and lipid storage. Their role in disease, such as cancer, where they are involved in metabolism and in chemoresistance, has emerged over recent years. Thus, the value of lipid droplets as diagnostic markers is increasingly apparent where number and size of droplets can be a useful prognostic. Although diverse in size, LDs are typically too small to be easily enumerated by conventional microscopy. The advent of super-resolution microscopy methods offers the prospect of detailed insights but there are currently no commercial STED probes suited to this task and STED, where this method has been used to study LDs it has relied on fixed samples. Here, we report a pyrene-based ceramide conjugate PyLa-C17Cer, that stains lipid droplets with exceptionally high precision in living cells and shows excellent performance in stimulated emission depletion microscopy. The parent compound PyLa comprises a pyrene carboxyl core appended with 3,4-dimethylaminophenyl. The resulting luminophore exhibits high fluorescent quantum yield, mega-Stokes shift and low cytotoxicity. From DFT calculations the Stokes shifted fluorescent state arises from a dimethylaminophenyl to pyrene charge-transfer transition. While the parent compound is cell permeable, it is relatively promiscuous, emitting from both protein and membranous structures within the living mammalian cell. However, on conjugation of C17 ceramide to the free carboxylic acid, the resulting PyLa-C17Cer, remains passively permeable to the cell membrane but targets lipid droplets within the cell through a temperature dependent mechanism, with high selectivity. Targeting was confirmed through colocalisation with the commercial lipid probe Nile Red. PyLa-C17Cer offers outstanding contrast of LDs both in fluorescence intensity and lifetime imaging due to its large Stokes shift and very weak emission from aqueous media. Moreover, because the compound is exceptionally photochemically stable with no detectable triplet emission under low temperature conditions, it can be used as an effective probe for fluorescence correlation spectroscopy (FCS). These versatile fluorophores are powerful multimodal probes for combined STED/FCS/lifetime studies of lipid droplets and domains in live cells.


Asunto(s)
Ceramidas/química , Colorantes Fluorescentes/química , Gotas Lipídicas/metabolismo , Pirenos/química , Ceramidas/síntesis química , Ceramidas/efectos de la radiación , Ceramidas/toxicidad , Colesterol/química , Teoría Funcional de la Densidad , Fluorescencia , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/efectos de la radiación , Colorantes Fluorescentes/toxicidad , Células HeLa , Humanos , Luz , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Microscopía Fluorescente/métodos , Modelos Químicos , Fosfatidilcolinas/química , Pirenos/síntesis química , Pirenos/efectos de la radiación , Pirenos/toxicidad , Esfingomielinas/química
17.
Phys Chem Chem Phys ; 21(40): 22440-22448, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31580345

RESUMEN

A pyrene charge transfer fluorophore with three ionizable N,N-dimethylaniline moieities was explored as an interfacial pH switch. The parent carboxylate compound and the thiolated derivative were shown by spectroscopy combined with DFT calculation to be successively and reversibly protonated. Protonation leads to progressive decrease of intensity of the 550 nm centered N,N-dimethylaniline to pyrene charge transfer emission which on protonation of the third site, leads to extinction of this transition and evolution of an intense blue (450 nm) pyrene-centered emission. Concomitant loss of the charge transfer absorbance was observed and the changes are reversed on neutralization of pH. A self-assembled monolayer of the thiolated derivative was prepared on gold and found from voltammetry of ferricyanide/ferrocyanide probe to form close packed monolayers. The probe voltammetry, label-free electrochemical impedance spectroscopy of the film was monitored as a function of pH and progressive, but reversible protonation steps were reflected in decreasing film resistance. The Stokes shift of the probe prevents self-quenching so a broad, charge transfer fluorescence centered around 540 nm was recorded for the self-assembled monolayer where as per solution, progressive and reversible reduction in intensity was observed. The facile assembly, impedance and optical switching make these materials potentially interesting as on-off or two colour on-off-on fluorescence switches with potential applications in logic gates or in responsive surface applications.

18.
J Am Chem Soc ; 140(22): 6945-6955, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29767962

RESUMEN

Exploiting NF-κB transcription factor peptide conjugation, a Ru(II)-bis-tap complex (tap = 1,4,5,8-tetraazaphenanthrene) was targeted specifically to the nuclei of live HeLa and CHO cells for the first time. DNA binding of the complex  within the nucleus of live cells was evident from gradual extinction of the metal complex luminescence after it had crossed the nuclear envelope, attributed to guanine quenching of the ruthenium emission via photoinduced electron transfer. Resonance Raman imaging confirmed that the complex remained in the nucleus after emission is extinguished. In the dark and under imaging conditions the cells remain viable, but efficient cellular destruction was induced with precise spatiotemporal control by applying higher irradiation intensities to selected cells. Solution studies indicate that the peptide conjugated complex associates strongly with calf thymus DNA ex-cellulo and gel electrophoresis confirmed that the peptide conjugate is capable of singlet oxygen independent photodamage to plasmid DNA. This indicates that the observed efficient cellular destruction likely operates via direct DNA oxidation by photoinduced electron transfer between guanine and the precision targeted Ru(II)-tap probe. The discrete targeting of polyazaaromatic complexes to the cell nucleus and confirmation that they are photocytotoxic after nuclear delivery is an important step toward their application in cellular phototherapy.


Asunto(s)
ADN/química , Compuestos Organometálicos/química , Péptidos/química , Fenantrenos/química , Rutenio/química , Animales , Células CHO , Supervivencia Celular , Cricetulus , Células HeLa , Humanos , Estructura Molecular , Procesos Fotoquímicos
19.
Langmuir ; 34(2): 715-725, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29240434

RESUMEN

Human blood platelets and SK-N-AS neuroblastoma cancer-cell capture at spontaneously adsorbed monolayers of fibrinogen-binding motifs, GRGDS (generic integrin adhesion), HHLGGAKQAGDV (exclusive to platelet integrin αIIbß3), or octanethiol (adhesion inhibitor) at planar gold and ordered 1.6 µm diameter spherical cap gold cavity arrays were compared. In all cases, arginine/glycine/aspartic acid (RGD) promoted capture, whereas alkanethiol monolayers inhibited adhesion. Conversely only platelets adhered to alanine/glycine/aspartic acid (AGD)-modified surfaces, indicating that the AGD motif is recognized preferentially by the platelet-specific integrin, αIIbß3. Microstructuring of the surface effectively eliminated nonspecific platelet/cell adsorption and dramatically enhanced capture compared to RGD/AGD-modified planar surfaces. In all cases, adhesion was reversible. Platelets and cells underwent morphological change on capture, the extent of which depended on the topography of the underlying substrate. This work demonstrates that both the nature of the modified interface and its underlying topography influence the capture of cancer cells and platelets. These insights may be useful in developing cell-based cancer diagnostics as well as in identifying strategies for the disruption of platelet cloaks around circulating tumor cells.


Asunto(s)
Plaquetas/metabolismo , Adhesión Celular , Oro/química , Oligopéptidos/química , Compuestos de Sulfhidrilo/química , Secuencia de Aminoácidos , Línea Celular Tumoral , Humanos , Microscopía Confocal , Microscopía Electrónica de Rastreo , Adhesividad Plaquetaria , Porosidad
20.
Angew Chem Int Ed Engl ; 57(38): 12420-12424, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30016579

RESUMEN

Mitochondrial DNA (mtDNA) plays a crucial but incompletely understood role in cellular biochemistry and etiology of numerous disease states. Thus, there is an urgent need for targeted probes that can dynamically respond to changes to mtDNA such as copy number in live cells, but it is difficult to permeate the mitochondrial membrane of the living cell. Now, a ruthenium(II) light-switching probe targeted by peptide vectorization selectively to mitochondrial nucleoids is presented. Evidence for DNA binding by the probe in live cells is derived from confocal fluorescence microscopy, resonance Raman, and luminescence lifetime imaging. While viable under imaging conditions, specific staining of mitochondrial DNA permitted efficient and selective photoinduced toxicity on a cell-by-cell basis under higher excitation intensities. This powerful combination of imaging and photocytotoxicity is an important step towards realizing phototheranostic application of such RuII probes.


Asunto(s)
Complejos de Coordinación/química , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Péptidos/química , Rutenio/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/toxicidad , Daño del ADN/efectos de los fármacos , Células HeLa , Humanos , Microscopía Confocal , Mitocondrias/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA