Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 21(4): 2012-2024, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497779

RESUMEN

The nonviral delivery systems that combine genes with photosensitizers for multimodal tumor gene/photodynamic therapy (PDT) have attracted much attention. In this study, a series of ROS-sensitive cationic bola-lipids were applied for the gene/photosensitizer codelivery. Zn-DPA was introduced as a cationic headgroup to enhance DNA binding, while the hydrophobic linking chains may facilitate the formation of lipid nanoparticles (LNP) and the encapsulation of photosensitizer Ce6. The length of the hydrophobic chain played an important role in the gene transfection process, and 14-TDZn containing the longest chains showed better DNA condensation, gene transfection, and cellular uptake. 14-TDZn LNPs could well load photosensitizer Ce6 to form 14-TDC without a loss of gene delivery efficiency. 14-TDC was used for codelivery of p53 and Ce6 to achieve enhanced therapeutic effects on the tumor cell proliferation inhibition and apoptosis. Results showed that the codelivery system was more effective in the inhibition of tumor cell proliferation than individual p53 or Ce6 monotherapy. Mechanism studies showed that the production of ROS after Ce6 irradiation could increase the accumulation of p53 protein in tumor cells, thereby promoting caspase-3 activation and inducing apoptosis, indicating some synergistic effect. These results demonstrated that 14-TDC may serve as a promising nanocarrier for gene/PDT combination therapy.


Asunto(s)
Liposomas , Nanopartículas , Fotoquimioterapia , Porfirinas , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Nanopartículas/química , ADN , Porfirinas/química
2.
Cell Commun Signal ; 21(1): 134, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316948

RESUMEN

BACKGROUND: Age-related macular degeneration (AMD), characterized by the degeneration of retinal pigment epithelium (RPE) and photoreceptors, is the leading cause of irreversible vision impairment among the elderly. RPE senescence is an important contributor to AMD and has become a potential target for AMD therapy. HTRA1 is one of the most significant susceptibility genes in AMD, however, the correlation between HTRA1 and RPE senescence hasn't been investigated in the pathogenesis of AMD. METHODS: Western blotting and immunohistochemistry were used to detect HTRA1 expression in WT and transgenic mice overexpressing human HTRA1 (hHTRA1-Tg mice). RT-qPCR was used to detect the SASP in hHTRA1-Tg mice and ARPE-19 cells infected with HTRA1. TEM, SA-ß-gal was used to detect the mitochondria and senescence in RPE. Retinal degeneration of mice was investigated by fundus photography, FFA, SD-OCT and ERG. The RNA-Seq dataset of ARPE-19 cells treated with adv-HTRA1 versus adv-NC were analyzed. Mitochondrial respiration and glycolytic capacity in ARPE-19 cells were measured using OCR and ECAR. Hypoxia of ARPE-19 cells was detected using EF5 Hypoxia Detection Kit. KC7F2 was used to reduce the HIF1α expression both in vitro and in vivo. RESULTS: In our study, we found that RPE senescence was facilitated in hHTRA1-Tg mice. And hHTRA1-Tg mice became more susceptible to NaIO3 in the development of oxidative stress-induced retinal degeneration. Similarly, overexpression of HTRA1 in ARPE-19 cells accelerated cellular senescence. Our RNA-seq revealed an overlap between HTRA1-induced differentially expressed genes associated with aging and those involved in mitochondrial function and hypoxia response in ARPE-19 cells. HTRA1 overexpression in ARPE-19 cells impaired mitochondrial function and augmented glycolytic capacity. Importantly, upregulation of HTRA1 remarkably activated HIF-1 signaling, shown as promoting HIF1α expression which mainly located in the nucleus. HIF1α translation inhibitor KC7F2 significantly prevented HTRA1-induced cellular senescence in ARPE-19 cells, as well as improved the visual function in hHTRA1-Tg mice treated with NaIO3. CONCLUSIONS: Our study showed elevated HTRA1 contributes to the pathogenesis of AMD by promoting cellular senescence in RPE through damaging mitochondrial function and activating HIF-1 signaling. It also pointed out that inhibition of HIF-1 signaling might serve as a potential therapeutic strategy for AMD. Video Abstract.


Asunto(s)
Degeneración Retiniana , Anciano , Humanos , Animales , Ratones , Epitelio Pigmentado de la Retina , Transducción de Señal , Mitocondrias , Núcleo Celular
3.
Mol Pharm ; 20(6): 3210-3222, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37150945

RESUMEN

Intracellular delivery of therapeutic biomacromolecules, including nucleic acids and proteins, attracts extensive attention in biotherapeutics for various diseases. Herein, a strategy is proposed for the construction of poly(disulfide)s for the efficient delivery of both nucleic acids and proteins into cells. A convenient photo-cross-linking polymerization was adopted between disulfide bonds in two modified lipoic acid monomers (Zn coordinated with dipicolylamine analogue (ZnDPA) and guanidine (GUA)). The disulfide-containing main chain of the resulting poly(disulfide)s was responsive to reducing circumstance, facilitating the release of cargos. By screening the feeding ratio of ZnDPA and GUA, the resulting poly(disulfide)s exhibited better performance in the delivery of nucleic acids including plasmid DNA and siRNA than commercially available transfection reagents. Cellular uptake results revealed that the polymer/cargo complexes entered the cells mainly following a thiol-mediated uptake pathway. Meanwhile, the polymer could also efficiently deliver proteins into cells without an obvious loss of protein activity, showing the versatility of the poly(disulfide)s for the delivery of various biomacromolecules. Moreover, the in vivo therapeutic effect of the materials was verified in the E.G7-OVA tumor-bearing mice. Ovalbumin-based nanovaccine induced a strong cellular immune response, especially cytotoxic T lymphocyte cellular immune response, and inhibited tumor growth. These results revealed the promise of the poly(disulfide)s in the application of both gene therapy and immunotherapy.


Asunto(s)
Neoplasias , Ácido Tióctico , Ratones , Animales , Disulfuros/química , Polímeros/química , ADN , Inmunoterapia , Neoplasias/terapia
4.
Sheng Li Xue Bao ; 75(6): 937-945, 2023 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-38151355

RESUMEN

The present study aims to establish comprehensive evaluation models of physical fitness of the elderly based on machine learning, and provide an important basis to monitor the elderly's physique. Through stratified sampling, the elderly aged 60 years and above were selected from 10 communities in Nanchang City. The physical fitness of the elderly was measured by the comprehensive physical assessment scale based on our previous study. Fuzzy neural network (FNN), support vector machine (SVM) and random forest (RF) models for comprehensive physical evaluation of the elderly people in communities were constructed respectively. The accuracy, sensitivity and specificity of the comprehensive physical fitness evaluation models constructed by FNN, SVM and RF were above 0.85, 0.75 and 0.89, respectively, with the FNN model possessing the best prediction performance. FNN, RF and SVM models are valuable in the comprehensive evaluation and prediction of physical fitness, which can be used as tools to carry out physical evaluation of the elderly.


Asunto(s)
Redes Neurales de la Computación , Aptitud Física , Anciano , Humanos , Ejercicio Físico , Aprendizaje Automático
5.
Sheng Li Xue Bao ; 75(6): 927-936, 2023 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-38151354

RESUMEN

The present study aims to construct an elderly vitality index evaluation system and develop a comprehensive vitality evaluation scale for the elderly to reasonably evaluate the vitality level of the elderly in China, so as to provide a reference for promoting the realization of "active aging" and "healthy aging". Literature research and in-depth interview were used to collect the senile vitality sensitive indexes. The indexes were screened and corrected by Delphi expert consultation method, item analysis method based on classical test theory, factor analysis method, and reliability and validity analysis method. The analytic hierarchy process was used to calculate the weight of each level of indexes. An elderly vitality evaluation system including 4 first-level indexes and 24 second-level indexes was constructed. The consistency test results of all levels of indicators showed that the consistency index (CI) and consistent ratio (CR) were both less than 0.1, which met the requirements and showed satisfactory consistency. The weights of exercise vitality, nutritional vitality, psychological vitality and social vitality were 0.263, 0.141, 0.455 and 0.141, respectively. In conclusion, the comprehensive vitality scale constructed for the Chinese elderly is reliable and scientific, and can be used to evaluate the vitality of the elderly.


Asunto(s)
Envejecimiento , Proceso de Jerarquía Analítica , Humanos , Anciano , Reproducibilidad de los Resultados , Técnica Delphi , China , Encuestas y Cuestionarios
6.
J Mol Cell Cardiol ; 170: 75-86, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35714558

RESUMEN

Long noncoding RNAs (lncRNAs) are critical regulators of inflammation with great potential as new therapeutic targets. However, the role of lncRNAs in early atherosclerosis remains poorly characterized. This study aimed to identify the key lncRNA players in activated endothelial cells (ECs). The lncRNAs in response to pro-inflammatory factors in ECs were screened through RNA sequencing. ICAM-1-related non-coding RNA (ICR) was identified as the most potential candidate for early atherosclerosis. ICR is essential for intercellular adhesion molecule-1 (ICAM1) expression, EC adhesion and migration. In a high fat diet-induced atherosclerosis model in mice, ICR is upregulated in the development of atherosclerosis. After intravenous injection of adenovirus carrying shRNA for mouse ICR, the atherosclerotic plaque area was markedly reduced with the declined expression of ICR and ICAM1. Mechanistically, ICR stabilized the mRNA of ICAM1 in quiescent ECs; while under inflammatory stress, ICR upregulated ICAM1 in a nuclear factor kappa B (NF-κB) dependent manner. RNA-seq analysis showed pro-inflammatory targets of NF-κB were regulated by ICR. Furthermore, the chromatin immunoprecipitation assays showed that p65 binds to ICR promoter and facilitates its transcription. Interestingly, ICR, in turn, promotes p65 accumulation and activity, forming a positive feedback loop to amplify NF-κB signaling. Preventing the degradation of p65 using proteasome inhibitors rescued the expression of NF-κB targets suppressed by ICR. Taken together, ICR acts as an accelerator to amplify NF-κB signaling in activated ECs and suppressing ICR is a promising early intervention for atherosclerosis through ICR/p65 loop blockade.


Asunto(s)
Aterosclerosis , ARN Largo no Codificante , Animales , Aterosclerosis/genética , Células Endoteliales/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Ratones , FN-kappa B/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
7.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293483

RESUMEN

Natriuretic peptide receptor 1 (NPR1) serves as a modulator of vascular endothelial homeostasis. Interactions between monocytes and endothelial cells may initiate endothelium dysfunction, which is known as an early hallmark of atherosclerosis. In this study, we performed RNA-sequencing analysis for the aorta of Npr1 knockout (Npr1+/-) mice and found that differentially expressed genes were significantly related to cell adhesion. This result was supported by an increased expression of intercellular adhesion molecule 1 (ICAM-1) in the aortic endothelium of Npr1+/- mice. Moreover, we observed that the knockdown of NPR1 increased ICAM-1 expression and promoted THP-1 monocyte adhesion to human umbilical vein endothelial cells (HUVECs). NPR1 overexpression decreased ICAM-1 expression and inhibited the adhesion of monocytes to HUVECs treated by TNF-α (a cell adhesion inducer). Further analysis showed that adhesion-related genes were enriched in the focal adhesion signaling pathway, in which integrin beta 4 (Itgb4) was determined as a key gene. Notably, ITGB4 expression increased in vascular endothelium of Npr1+/- mice and in NPR1-knockdown HUVECs. The deficiency of ITGB4 decreased ICAM-1 expression and attenuated monocyte adhesion to NPR1-knockdown endothelial cells. Additionally, a reduced NPR1 and an increased ITGB4 expression level were found in an atherosclerosis mouse model. In conclusion, our findings demonstrate that NPR1 deficiency increases vascular endothelial cell adhesion by stimulating ITGB4 expression, which may contribute to the development of atherosclerosis.


Asunto(s)
Aterosclerosis , Molécula 1 de Adhesión Intercelular , Humanos , Ratones , Animales , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Endotelio Vascular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Monocitos/metabolismo , Adhesión Celular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Integrinas/metabolismo , ARN/metabolismo
8.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35270021

RESUMEN

Hyperglycemia is reported to accelerate endothelial cell senescence that contributes to diabetic complications. The underlying mechanism, however, remains elusive. We previously demonstrated AQR as a susceptibility gene for type 2 diabetes mellitus (T2DM) and showed that it was increased in multiple tissues in models with T2DM or metabolic syndrome. This study aimed to investigate the role of AQR in hyperglycemia-induced senescence and its underlying mechanism. Here, we retrieved several datasets of the aging models and found the expression of AQR was increased by high glucose and by aging across species, including C. elegans (whole-body), rat (cardiac tissues), and monkey (blood). we validated the increased AQR expression in senescent human umbilical vein endothelial cells (HUVECs). When overexpressed, AQR promoted the endothelial cell senescence, confirmed by an increased number of cells stained with senescence-associated beta-galactosidase and upregulation of CDKN1A (P21) as well as the prohibited cellular colony formation and G2/M phase arrest. To explore the mechanism by which AQR regulated the cellular senescence, transcriptomic analyses of HUVECs with the overexpression and knockdown of the AQR were performed. We identified 52 co-expressed genes that were enriched, in the terms of plasminogen activation, innate immunity, immunity, and antiviral defense. Among co-expressed genes, PLAU was selected to evaluate its contribution to senescence for its highest strength in the enrichment of the biological process. We demonstrated that the knockdown of PLAU rescued senescence-related phenotypes, endothelial cell activation, and inflammation in models induced by AQR or TNF-α. These findings, for the first time, indicate that AQR/PLAU is a critical signaling axis in the modulation of endothelial cell senescence, revealing a novel link between hyperglycemia and vascular dysfunction. The study may have implications in the prevention of premature vascular aging associated with T2DM.


Asunto(s)
Fenómenos Biológicos , Diabetes Mellitus Tipo 2 , Hiperglucemia , Animales , Caenorhabditis elegans , Células Cultivadas , Senescencia Celular/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Ratas
9.
Genome Res ; 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29440281

RESUMEN

Cellular senescence has been viewed as a tumor suppression mechanism and also as a contributor to individual aging. Widespread shortening of 3' untranslated regions (3' UTRs) in messenger RNAs (mRNAs) by alternative polyadenylation (APA) has recently been discovered in cancer cells. However, the role of APA in the process of cellular senescence remains elusive. Here, we found that hundreds of genes in senescent cells tended to use distal poly(A) (pA) sites, leading to a global lengthening of 3' UTRs and reduced gene expression. Genes that harbor longer 3' UTRs in senescent cells were enriched in senescence-related pathways. Rras2, a member of the Ras superfamily that participates in multiple signal transduction pathways, preferred longer 3' UTR usage and exhibited decreased expression in senescent cells. Depletion of Rras2 promoted senescence, while rescue of Rras2 reversed senescence-associated phenotypes. Mechanistically, splicing factor TRA2B bound to a core "AGAA" motif located in the alternative 3' UTR of Rras2, thereby reducing the RRAS2 protein level and causing senescence. Both proximal and distal poly(A) signals showed strong sequence conservation, highlighting the vital role of APA regulation during evolution. Our results revealed APA as a novel mechanism in regulating cellular senescence.

10.
Am J Pathol ; 188(4): 1043-1058, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29353058

RESUMEN

Coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, ear anomalies/deafness (CHARGE) syndrome is a congenital disorder affecting multiple organs and mainly caused by mutations in CHD7, a gene encoding a chromatin-remodeling protein. Immunodeficiency and reduced T cells have been noted in CHARGE syndrome. However, the mechanisms underlying T lymphopenia are largely unexplored. Herein, we observed dramatic decrease of T cells in both chd7knockdown and knockout zebrafish embryos. Unexpectedly, hematopoietic stem and progenitor cells and, particularly, lymphoid progenitor cells were increased peripherally in nonthymic areas in chd7-deficient embryos, unlikely to contribute to the T-cell decrease. Further analysis demonstrated that both the organogenesis and homing function of the thymus were seriously impaired. Chd7 might regulate thymus organogenesis through modulating the development of both neural crest cell-derived mesenchyme and pharyngeal endoderm-derived thymic epithelial cells. The expression of foxn1, a central regulator of thymic epithelium, was remarkably down-regulated in the pharyngeal region in chd7-deficient embryos. Moreover, the T-cell reduction in chd7-deficient embryos was partially rescued by overexpressing foxn1, suggesting that restoring thymic epithelium may be a potential therapeutic strategy for treating immunodeficiency in CHARGE syndrome. Collectively, the results indicated that chd7 was critical for thymic development and T-lymphopenia in CHARGE syndrome may be mainly attributed to the defects of thymic organogenesis. The current finding may benefit the diagnosis and therapy of T lymphopenia and immunodeficiency in CHARGE syndrome.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Organogénesis , Linfocitos T/citología , Timo/citología , Timo/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/efectos de los fármacos , Secuencia de Bases , Proteínas Morfogenéticas Óseas/metabolismo , Región Branquial/efectos de los fármacos , Región Branquial/embriología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quimiocinas/metabolismo , ADN Helicasas/deficiencia , Proteínas de Unión al ADN/deficiencia , Embrión no Mamífero/metabolismo , Células Epiteliales/metabolismo , Factores de Transcripción Forkhead/metabolismo , Células Madre Hematopoyéticas/metabolismo , Morfolinos/farmacología , Mutación/genética , Cresta Neural/patología , Fenotipo , Transducción de Señal , Pez Cebra/embriología , Proteínas de Pez Cebra/deficiencia
11.
Arterioscler Thromb Vasc Biol ; 38(4): 964-975, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29472232

RESUMEN

OBJECTIVE: The genetic contribution to coronary artery disease (CAD) remains largely unclear. We combined genetic screening with functional characterizations to identify novel loci and candidate genes for CAD. APPROACH AND RESULTS: We performed genome-wide screening followed by multicenter validation in 8 cohorts consisting of 21 828 participants of Han ethnicity and identified 3 novel intragenic SNPs (single nucleotide polymorphisms), rs9486729 (SCML4 [Scm polycomb group protein-like 4]; odds ratio, 1.25; 95% CI, 1.17-1.34; P=3.51×10-11), rs17165136 (THSD7A [thrombospondin type 1 domain-containing 7A]; odds ratio 1.28; 95% CI, 1.21-1.35; P<1.00×10-25), and rs852787 (DAB1 [disabled-1]; odds ratio, 1.29; 95% CI, 1.21-1.38; P=2.02×10-14), associated with CAD with genome-wide significance. The risk allele of rs9486729 and protective allele of rs17165136 were associated with the decreased expression of their host genes, SCML4 and THSD7A, respectively, whereas rs852787 did not have transcriptional effects on any gene. Knockdown of SCML4 activated endothelial cells by increasing the expression of IL-6, E-selectin, and ICAM and weakened their antiapoptotic activity, whereas the knockdown of THSD7A had little effect on these endothelial cell functions but attenuated monocyte adhesion via decreasing the expression of ICAM, L-selectin, and ITGB2. We further showed that inhibiting the expression of SCML4 exacerbated endothelial dysfunction and vascular remodeling in a rat model with partial carotid ligation. CONCLUSIONS: We identify 3 novel loci associated with CAD and show that 2 genes, SCML4 and THSD7A, make functional contributions to atherosclerosis. How rs852787 and its host gene DAB1 are linked to CAD needs further studies.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Proteínas del Grupo Polycomb/genética , Polimorfismo de Nucleótido Simple , Trombospondinas/genética , Adulto , Anciano , Animales , Pueblo Asiatico/genética , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Estenosis Carotídea/genética , Estenosis Carotídea/metabolismo , Estenosis Carotídea/patología , Células Cultivadas , China/epidemiología , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/etnología , Enfermedad de la Arteria Coronaria/metabolismo , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Proteínas del Grupo Polycomb/metabolismo , Ratas Sprague-Dawley , Factores de Riesgo , Trombospondinas/metabolismo , Remodelación Vascular
12.
Hum Mol Genet ; 25(23): 5094-5110, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27522498

RESUMEN

Aggf1 is the first gene identified for Klippel-Trenaunay syndrome (KTS), and encodes an angiogenic factor. However, the in vivo roles of Aggf1 are incompletely defined. Here we demonstrate that Aggf1 is essential for both physiological angiogenesis and pathological tumour angiogenesis in vivo. Two lines of Aggf1 knockout (KO) mice showed a particularly severe phenotype as no homozygous embryos were observed and heterozygous mice also showed embryonic lethality (haploinsufficient lethality) observed only for Vegfa and Dll4. Aggf1+/- KO caused defective angiogenesis in yolk sacs and embryos. Survived adult heterozygous mice exhibit frequent haemorrhages and increased vascular permeability due to increased phosphorylation and reduced membrane localization of VE-cadherin. AGGF1 inhibits VE-cadherin phosphorylation, increases plasma membrane VE-cadherin in ECs and in mice, blocks vascular permeability induced by ischaemia-reperfusion (IR), restores depressed cardiac function and contraction, reduces infarct sizes, cardiac fibrosis and necrosis, haemorrhages, edema, and macrophage density associated with IR. Mechanistically, AGGF1 promotes angiogenesis by activating catalytic p110α subunit and p85α regulatory subunit of PI3K, leading to activation of AKT, GSK3ß and p70S6K. AKT activation is significantly reduced in heterozygous KO mice and isolated KO ECs, which can be rescued by exogenous AGGF1. ECs from KO mice show reduced capillary angiogenesis, which is rescued by AGGF1 and AKT. Tumour growth/angiogenesis is reduced in heterozygous mice, which was associated with reduced activation of p110α, p85α and AKT. Together with recent identification of somatic mutations in p110α (encoded by PIK3CA), our data establish a potential mechanistic link between AGGF1 and PIK3CA, the two genes identified for KTS.


Asunto(s)
Proteínas Angiogénicas/genética , Antígenos CD/genética , Cadherinas/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Síndrome de Klippel-Trenaunay-Weber/genética , Neovascularización Patológica/genética , Proteínas Angiogénicas/biosíntesis , Animales , Antígenos CD/biosíntesis , Cadherinas/biosíntesis , Fosfatidilinositol 3-Quinasa Clase I/biosíntesis , Desarrollo Embrionario/genética , Haploinsuficiencia/genética , Humanos , Síndrome de Klippel-Trenaunay-Weber/fisiopatología , Ratones , Ratones Noqueados , Neovascularización Fisiológica/genética , Proteína Oncogénica v-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Transducción de Señal/genética
13.
Pharmacogenet Genomics ; 26(11): 497-504, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27602548

RESUMEN

OBJECTIVE: The aim of this study was to refine the chromosomal region 12q24.1 associated with coronary artery disease in Han Chinese populations. METHODS AND RESULTS: Twenty tagging single nucleotide polymorphisms covering 1.2 Mb of chromosomal 12q24.1 were selected and genotyped in three geographically isolated case-control populations consisting of 7076 coronary artery disease (CAD) patients and non-CAD participants. In addition to replication of the previous block (block 1), we identified a novel block (block 2) associated with CAD. In a combined analysis, the odds ratio (95% confidence interval, permuted P value) were 0.79 (0.72-0.86, 8.358×10) and 1.24 (1.13-1.36, 2.576×10) for haplotypes ATGGG and GCACA in block 1 and 1.22 (1.14-1.30, 6.484×10) and 0.82 (0.77-0.88, 6.484×10) for haplotypes GA and AG in block 2, respectively. Protective alleles of two index single nucleotide polymorphisms decreased the expression of NAA25 (P=0.034), but did not alter the expression of other genes within block 2. CONCLUSION: We identified a novel block associated with CAD at chromosomal 12q24.


Asunto(s)
Pueblo Asiatico/etnología , Cromosomas Humanos Par 12/genética , Enfermedad de la Arteria Coronaria/genética , Polimorfismo de Nucleótido Simple , Pueblo Asiatico/genética , Estudios de Casos y Controles , China/etnología , Femenino , Predisposición Genética a la Enfermedad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa
14.
Int J Mol Sci ; 17(7)2016 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-27455246

RESUMEN

Mutations in the genes low-density lipoprotein (LDL) receptor-related protein-6 (LRP6) and myocyte enhancer factor 2A (MEF2A) were reported in families with coronary artery disease (CAD). We intend to determine the mutational spectrum of these genes among hyperlipidemic and normolipidemic CAD families. Forty probands with early-onset CAD were recruited from 19 hyperlipidemic and 21 normolipidemic Chinese families. We sequenced all exons and intron-exon boundaries of LRP6 and MEF2A, and found a novel heterozygous variant in LRP6 from a proband with normolipidemic CAD. This variant led to a substitution of histidine to tyrosine (Y418H) in an evolutionarily conserved domain YWTD in exon 6 and was not found in 1025 unrelated healthy individuals. Co-segregated with CAD in the affected family, LRP6Y418H significantly debilitated the Wnt3a-associated signaling pathway, suppressed endothelial cell proliferation and migration, and decreased anti-apoptotic ability. However, it exhibited no influences on low-density lipoprotein cholesterol uptake. Thus, mutation Y418H in LRP6 likely contributes to normolipidemic familial CAD via impairing endothelial cell functions and weakening the Wnt3a signaling pathway.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Endotelio Vascular/patología , Predisposición Genética a la Enfermedad , Hiperlipidemias/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Mutación/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Western Blotting , Estudios de Casos y Controles , Células Cultivadas , Enfermedad de la Arteria Coronaria/metabolismo , Endotelio Vascular/metabolismo , Femenino , Humanos , Hiperlipidemias/complicaciones , Lípidos/análisis , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Persona de Mediana Edad , Linaje , Reacción en Cadena en Tiempo Real de la Polimerasa , Homología de Secuencia de Aminoácido , Adulto Joven
15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(2): 355-8, 2016 Feb.
Artículo en Zh | MEDLINE | ID: mdl-27209730

RESUMEN

There are some problems in the traditional transient temperature test equipment. The thermal inertia is great, and can only be a single point of detection. To be able to achieve real-time monitoring for transient temperature distribution change of the gun body surface, the test system for transient temperature distribution was designed based on Speckle Pattern Interferometry (SPI) and spectroscopy. In the system, transient temperature change of the barrel led to slight deformation, and it was converted into speckle interference fringes by SPI technology. Spectral distribution function was obtained by the interference fringes by the Fourier transform, so the information of interference fringe deformation was incorporated into the frequency domain. The data of temperature distribution can be inverted on any sampling time by spectral distribution function. In experiments, the ZX-FB1 fiber optic thermometer was used to test transient temperature on a single point as the standard value. The center wavelength of the laser was 555 nm, and the speckle pattern interference fringes were collected by area array CCD. Image Recognition-Speckle Pattern Interferometry (IR-SPI) and Fourier Transform-Speckle Pattern Interferometry (FT-SPI) were used in experiments, the calculation of transient temperature was completed through two methods. Experimental results are that both methods can achieve transient temperature detection. But the FT-SPI is higher in terms of accuracy, and it can effectively overcome the gross error caused by the surface defects, paint wear and other similar problems.

16.
Eur J Pharm Biopharm ; : 114348, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844097

RESUMEN

Nitric oxide (NO) / ß-Lapachone (Lap) combined therapy by causing oxidative stress is an effective tumor therapy strategy. Herein, a dual-responsive lipid nanoparticles (LNPs) LSNO for NO / Lap co-delivery were constructed from the zinc-coordinated lipid (DSNO(Zn)) and the hydrophobic drug Lap in the presence of helper lipids (DOPE and DSPE-PEG2000). The zinc-coordinated structure in LSNO might elevate the Zn2+ content in tumor cells, contributing to antioxidant imbalance. The fluorescent assays proved the light-triggered NO release and fluorescent self-reporting abilities of LSNO. In addition, the LNPs had good drug release behavior under high concentration of GSH, indicating the NO / drug co-delivery capacity. In vitro antitumor assays showed that the NO / Lap combination treatment group could induce more significant tumor cell growth inhibition and cell apoptosis than individual NO or Lap treatment. The following mechanism studies revealed that NO / Lap combination treatment led to distinct oxidative stress by producing reactive oxygen species (ROS) and peroxynitrite anion (ONOO-). On the other hand, the intracellular redox balance could be further disrupted by Lap-induced NADPH consumption and Zn2+ / NO-induced reductase activities downregulation, thus promoting the degree of cell damage. Besides, it was also found that NO and Lap could directly damage nuclear DNA and induce mitochondrial dysfunction, thereby leading to caspase-3 activation and tumor cell death. These results proved that LSNO could serve as a promising multifunctional tumor therapy platform.

17.
J Cachexia Sarcopenia Muscle ; 15(1): 173-188, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009816

RESUMEN

BACKGROUND: Handelin is a bioactive compound from Chrysanthemum indicum L. that improves motor function and muscle integrity during aging in Caenorhabditis elegans. This study aimed to further evaluate the protective effects and molecular mechanisms of handelin in a mouse muscle atrophy model induced by cachexia and aging. METHODS: A tumour necrosis factor (TNF)-α-induced atrophy model was used to examine handelin activity in cultured C2C12 myotubes in vitro. Lipopolysaccharide (LPS)-treated 8-week-old model mice and 23-month-old (aged) mice were used to examine the therapeutic effects of handelin on cachexia- and aging-induced muscle atrophy, respectively, in vivo. Protein and mRNA expressions were analysed by Western blotting, ELISA and quantitative PCR, respectively. Skeletal muscle mass was measured by histological analysis. RESULTS: Handelin treatment resulted in an upregulation of protein levels of early (MyoD and myogenin) and late (myosin heavy chain, MyHC) differentiation markers in C2C12 myotubes (P < 0.05), and enhanced mitochondrial respiratory (P < 0.05). In TNF-α-induced myotube atrophy model, handelin maintained MyHC protein levels, increased insulin-like growth factor (Igf1) mRNA expression and phosphorylated protein kinase B protein levels (P < 0.05). Handelin also reduced atrogin-1 expression, inhibited nuclear factor-κB activation and reduced mRNA levels of interleukin (Il)6, Il1b and chemokine ligand 1 (Cxcl1) (P < 0.05). In LPS-treated mice, handelin increased body weight (P < 0.05), the weight (P < 0.01) and cross-sectional area (CSA) of the soleus muscle (P < 0.0001) and improved motor function (P < 0.05). In aged mice, handelin slightly increased the weight of the tibialis anterior muscle (P = 0.06) and CSA of the tibialis anterior and gastrocnemius muscles (P < 0.0001). In the tibialis anterior muscle of aged mice, handelin upregulated mRNA levels of Igf1 (P < 0.01), anti-inflammatory cytokine Il10 (P < 0.01), mitochondrial biogenesis genes (P < 0.05) and antioxidant-related enzymes (P < 0.05) and strengthened Sod and Cat enzyme activity (P < 0.05). Handelin also reduced lipid peroxidation and protein carbonylation, downregulated mRNA levels of Fbxo32, Mstn, Cxcl1, Il1b and Tnf (P < 0.05), and decreased IL-1ß levels in serum (P < 0.05). Knockdown of Hsp70 or using an Hsp70 inhibitor abolished the ameliorating effects of handelin on myotube atrophy. CONCLUSIONS: Handelin ameliorated cachexia- and aging-induced skeletal muscle atrophy in vitro and in vivo, by maintaining homeostasis of protein synthesis and degradation, possibly by inhibiting inflammation. Handelin is a potentially promising drug candidate for the treatment of muscle wasting.


Asunto(s)
Caquexia , Proteostasis , Terpenos , Animales , Ratones , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/uso terapéutico , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Músculo Esquelético/patología , Factor de Necrosis Tumoral alfa , Modelos Animales de Enfermedad , Inflamación/metabolismo , ARN Mensajero/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-38416803

RESUMEN

Advanced age is an independent risk factor for coronary artery disease (CAD), the leading global cause of mortality. Senescent vascular cells in the atherosclerotic plaques exhibit senescence-associated secretory phenotype (SASP). How SASP contributes to atherosclerosis and CAD, however, remains unclear. Here, we integrated RNA-array datasets of senescent human coronary arterial endothelial cells (HCAECs) and aortic smooth muscle cells (HASMCs) as well as genome-wide association data for CAD. We identified 26 genes from HCAECs and 6 genes from HASMCs related to SASP and CAD in both in-house and published datasets. Of which, Cystatin C (CST3), a CAD susceptibility gene, was found to be expressed in both HCAECs and HASMCs, thus, it was prioritized for further investigation. We demonstrated it was significantly elevated in senescent vascular cells, aged arteries, and early atherosclerosis. In vitro experiments showed that CST3 enhances the monocyte-endothelial cell adhesion. Additionally, ligand-receptor pairing analyses revealed two important pathways, COL4A1-ITGA1 and LPL-LRP1 pathways, linked to the critical processes in the development of atherosclerosis, including cell adhesion, inflammation response, extracellular matrix organization, and lipid metabolism. We further demonstrated a reduced monocyte-endothelial cell adhesion following the knockdown of COL4A1 or ITGA1 and a significantly increased expression of COL4A1, ITGA1, and LPL in arterial intima of aged mice and ApoE-/- mice. Our findings demonstrate that vascular cell-derived SASP proteins increase the CAD susceptibility and identify CST3 functionally contributing to atherosclerosis.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Ratones , Animales , Anciano , Enfermedad de la Arteria Coronaria/genética , Células Endoteliales/metabolismo , Estudio de Asociación del Genoma Completo , Ratones Noqueados para ApoE , Aterosclerosis/genética , Proteínas , Senescencia Celular
19.
Heliyon ; 10(1): e23691, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38192771

RESUMEN

It is long observed that females tend to live longer than males in nearly every country. However, the underlying mechanism remains elusive. In this study, we discovered that genetic associations with longevity are on average stronger in females than in males through bio-demographic analyses of genome-wide association studies (GWAS) dataset of 2178 centenarians and 2299 middle-age controls of Chinese Longitudinal Healthy Longevity Study (CLHLS). This discovery is replicated across North and South regions of China, and is further confirmed by North-South discovery/replication analyses of different and independent datasets of Chinese healthy aging candidate genes with CLHLS participants who are not in CLHLS GWAS, including 2972 centenarians and 1992 middle-age controls. Our polygenic risk score analyses of eight exclusive groups of sex-specific genes, analyses of sex-specific and not-sex-specific individual genes, and Genome-wide Complex Trait Analysis using all SNPs all reconfirm that genetic associations with longevity are on average stronger in females than in males. Our discovery/replication analyses are based on genetic datasets of in total 5150 centenarians and compatible middle-age controls, which comprises the worldwide largest sample of centenarians. The present study's findings may partially explain the well-known male-female health-survival paradox and suggest that genetic variants may be associated with different reactions between males and females to the same vaccine, drug treatment and/or nutritional intervention. Thus, our findings provide evidence to steer away from traditional view that "one-size-fits-all" for clinical interventions, and to consider sex differences for improving healthcare efficiency. We suggest future investigations focusing on effects of interactions between sex-specific genetic variants and environment on longevity as well as biological function.

20.
BMC Geriatr ; 13: 91, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-24016068

RESUMEN

BACKGROUND: Existing literature indicates that ADRB2 gene is associated with health and longevity, but none of previous studies investigated associations of carrying the ADRB2 minor alleles and interactions between ADRB2 genotypes and social/behavioral factors(GxE) with health outcomes at advanced ages. This study intends to fill in this research gap. METHOD: We conducted an exploratory analysis, using longitudinal survey phenotype/genotype data from 877 oldest-old aged 90+. To estimate association of GxE interactions with health outcome, adjusted for the potential correlation between genotypes and social/behavioral factors and various other potentially confounding factors, we develop and test an innovative three-step procedure which combines logistic regression and structural equation methods. RESULTS: Interaction between regular exercise and carrying rs1042718 minor allele is significantly and positively associated with good cognitive function; interaction between regular exercise and carrying rs1042718 or rs1042719 minor allele is significantly and positively associated with self-reported good health; and interaction between social-leisure activities and carrying rs1042719 minor allele is significantly and positively associated with self-reported good health. Carrying rs1042718 or rs1042719 minor alleles is significantly and negatively associated with negative emotion, but the ADRB2 SNPs are not significantly associated with cognitive function and self-reported health. Our structural equation analysis found that, adjusted for the confounding effects of correlation of the ADRB2 SNPs with negative emotion, interaction between negative emotion and carrying rs1042718 or rs1042719 minor allele is significantly and negatively associated with cognitive function. The positive association of regular exercise and social-leisure activities with cognitive function and self-reported health, and negative association of negative emotion with cognitive function, were much stronger among carriers of rs1042718 or rs1042719 alleles, compared to the non-carriers. CONCLUSIONS: The results indicate significant positive associations of interactions between social/behavioral factors and the ADRB2 genotypes with health outcomes of cognitive function and self-reported health, and negative associations of carrying rs1042718 or rs1042719 minor alleles with negative emotion, at advanced ages in China. Our findings are exploratory rather than causal conclusions. This study implies that near-future health promotion programs considering individuals' genetic profiles, with appropriate protection of privacy/confidentiality, would yield increased benefits and reduced costs to the programs and their participants.


Asunto(s)
Envejecimiento/genética , Pueblo Asiatico/genética , Genotipo , Estado de Salud , Receptores Adrenérgicos beta 2/genética , Conducta Social , Anciano de 80 o más Años , Pueblo Asiatico/etnología , China/etnología , Femenino , Encuestas Epidemiológicas/métodos , Humanos , Estudios Longitudinales , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA