Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neurobiol Learn Mem ; 161: 37-45, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30735789

RESUMEN

Repetitive anodal transcranial direct current stimulation (tDCS) in a rat model of Alzheimer's disease (AD) has been shown to have distinct neuroprotective effects. Moreover, the effects of anodal tDCS not only occur during the stimulation but also persist after the stimulation has ended (after-effects). Here, the duration of the after-effects induced by repetitive anodal tDCS was investigated based on our previous studies. Adult male Sprague-Dawley rats were divided into three groups: a sham group, a ß-amyloid (Aß) group (AD group) and a stimulation group (ATD group). Aß was injected into the bilateral hippocampi of the rats in the AD and ATD groups to produce the AD model. Rats in the ATD group underwent 10 sessions of anodal tDCS, and the after-effects of repetitive anodal tDCS were evaluated by behavioral and histological analyses. A Morris water maze (MWM) was utilized on a monthly basis to assess spatial learning and memory abilities. The ATD group showed shorter escape latencies and more platform region crossings than the AD group. Hippocampal choline acetyltransferase (ChAT) and glial fibrillary acidic protein (GFAP) immunohistochemical analyses were carried out after the last MWM assessment. The immunohistochemistry results showed notable differences among the groups, particularly between the AD and ATD groups. This study reveals that repetitive anodal tDCS can not only improve cognitive function and memory performance but also has long-term after-effects that persist for 2 months.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Hipocampo/fisiopatología , Aprendizaje por Laberinto/fisiología , Memoria Espacial/fisiología , Estimulación Transcraneal de Corriente Directa , Enfermedad de Alzheimer/inducido químicamente , Péptidos beta-Amiloides/farmacología , Animales , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Ratas , Factores de Tiempo
2.
Neural Regen Res ; 17(10): 2278-2285, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35259850

RESUMEN

Anodal transcranial direct current stimulation (AtDCS) has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer's disease in the preclinical stage. However, this enhancement was only observed immediately after AtDCS, and the long-term effect of AtDCS remains unknown. In this study, we treated 26-week-old mouse models of Alzheimer's disease in the preclinical stage with 10 AtDCS sessions or sham stimulation. The Morris water maze, novel object recognition task, and novel object location test were implemented to evaluate spatial learning memory and recognition memory of mice. Western blotting was used to detect the relevant protein content. Morphological changes were observed using immunohistochemistry and immunofluorescence staining. Six weeks after treatment, the mice subjected to AtDCS sessions had a shorter escape latency, a shorter path length, more platform area crossings, and spent more time in the target quadrant than sham-stimulated mice. The mice subjected to AtDCS sessions also performed better in the novel object recognition and novel object location tests than sham-stimulated mice. Furthermore, AtDCS reduced the levels of amyloid-ß42 and glial fibrillary acidic protein, a marker of astrocyte activation, and increased the level of neuronal marker NeuN in hippocampal tissue. These findings suggest that AtDCS can improve the spatial learning and memory abilities and pathological state of an APP/PS1 mouse model of Alzheimer's disease in the preclinical stage, with improvements that last for at least 6 weeks.

3.
Front Behav Neurosci ; 11: 115, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28659772

RESUMEN

Background: Transcranial direct current stimulation (tDCS) is widely used to treat human nerve disorders and neuropathic pain by modulating the excitability of cortex. The effectiveness of tDCS is influenced by its stimulation parameters, but there have been no systematic studies to help guide the selection of different parameters. Objective: This study aims to assess the effects of tDCS of primary motor cortex (M1) on chronic neuropathic pain in rats and to test for the optimal parameter combinations for analgesia. Methods: Using the chronic neuropathic pain models of chronic constriction injury (CCI), we measured pain thresholds before and after anodal-tDCS (A-tDCS) using different parameter conditions, including stimulation intensity, stimulation time, intervention time and electrode located (ipsilateral or contralateral M1 of the ligated paw on male/female CCI models). Results: Following the application of A-tDCS over M1, we observed that the antinociceptive effects were depended on different parameters. First, we found that repetitive A-tDCS had a longer analgesic effect than single stimulus, and both ipsilateral-tDCS (ip-tDCS) and contralateral-tDCS (con-tDCS) produce a long-lasting analgesic effect on neuropathic pain. Second, the antinociceptive effects were intensity-dependent and time-dependent, high intensities worked better than low intensities and long stimulus durations worked better than short stimulus durations. Third, timing of the intervention after injury affected the stimulation outcome, early use of tDCS was an effective method to prevent the development of pain, and more frequent intervention induced more analgesia in CCI rats, finally, similar antinociceptive effects of con- and ip-tDCS were observed in both sexes of CCI rats. Conclusion: Optimized protocols of tDCS for treating antinociceptive effects were developed. These findings should be taken into consideration when using tDCS to produce analgesic effects in clinical applications.

5.
Artículo en Zh | MEDLINE | ID: mdl-21329003

RESUMEN

OBJECTIVE: In order to study the effect of fastigial nucleus stimulation (FNS) on human cardiovascular system, the photo plethysmogram (PPG) affected by FNS were recorded and analyzed. METHODS: Thirty volunteers' pulse signals were recorded before, during and after the FNS, and 5 PPG characteristics, such as H, Slope, and K were extracted. Changes of each characteristic in three stages were analyzed contrastive and based on which physiological changes caused by FNS were described. RESULTS: The pulse wave showed sensitive on-going short-term changes during the FNS. CONCLUSION: Changes of characteristics indicates that FNS results in ongoing short-term changes of some physiological parameters such as peripheral blood flow and peripheral resistance.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Núcleos Cerebelosos/fisiología , Estimulación Eléctrica , Adulto , Femenino , Frecuencia Cardíaca , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA