Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(12): 8575-8583, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28289743

RESUMEN

High glycine-tyrosine (HGT) proteins are an important constituent of the keratin associated proteins (KAPs) present in human hair. The glassy state physics of hair fibres are thought to be largely regulated by KAPs, which exist in an amorphous state and are readily affected by environmental conditions. However, there are no studies characterizing the individual KAPs. In this paper, we present the first step to fill this gap by computational modeling and experimental studies on a HGT protein, KAP8.1. In particular, we have modeled the three-dimensional structure of this 63-residue protein using homology information from an anti-freeze protein in snow flea. The model for KAP8.1 is characterized by four strands of poly-proline II (or PPII) type helical secondary structures, held together by two cysteine disulphide bridges. Computer simulations confirm the stability of the modelled structure and show that the protein largely samples the PPII and ß-sheet conformations during the molecular dynamics simulations. Spectroscopic studies including Raman, IR and vibrational circular dichroism have also been performed on synthesized KAP8.1. The experimental studies suggest that KAP8.1 is characterised by ß-sheet and PPII structures, largely consistent with the simulation studies. The model built in this work is a good starting point for further simulations to study in greater depth the glassy state physics of hair, including its water sorption isotherms, glass transition, and the effect of HGT proteins on KAP matrix plasticization. These results are a significant step towards our goal of understanding how the properties of hair can be affected and manipulated under different environmental conditions of temperature, humidity, ageing and small molecule additives.


Asunto(s)
Glicina/química , Queratinas/química , Modelos Moleculares , Tirosina/química , Animales , Simulación por Computador , Humanos , Conformación Proteica en Lámina beta , Estructura Secundaria de Proteína , Análisis Espectral
2.
JACS Au ; 4(6): 2220-2227, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38938809

RESUMEN

The counter-electrode process of an organic electrochemical reaction is integral for the success and sustainability of the process. Unlike for oxidation reactions, counter-electrode processes for reduction reactions remain limited, especially for deep reductions that apply very negative potentials. Herein, we report the development of a bromide-mediated silane oxidation counter-electrode process for nonaqueous electrochemical reduction reactions in undivided cells. The system is found to be suitable for replacing either sacrificial anodes or a divided cell in several reported reactions. The conditions are metal-free, use inexpensive reagents and a graphite anode, are scalable, and the byproducts are reductively stable and readily removed. We showcase the translation of a previously reported divided cell reaction to a >100 g scale in continuous flow.

3.
Org Lett ; 26(3): 653-657, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38227550

RESUMEN

Amide bonds are ubiquitous and found in a myriad of functional molecules. Although formed in a reliable and robust fashion, alternative amide bond disconnections provide flexibility and synthetic control. Herein we describe an electrochemical method to form the non-amide C-N bond from direct benzylic C(sp3)-H amidation. Our approach is applied toward the synthesis of secondary amides by coupling secondary benzylic substrates with substituted primary benzamides. The reaction has been scaled up to a multigram scale in flow.

4.
Science ; 382(6669): 464-471, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37883539

RESUMEN

Functionally similar to the tight junctions present in animal guts, plant roots have evolved a lignified Casparian strip as an extracellular diffusion barrier in the endodermis to seal the root apoplast and maintain nutrient homeostasis. How this diffusion barrier is structured has been partially defined, but its lignin polymerization and assembly steps remain elusive. Here, we characterize a family of dirigent proteins (DPs) essential for both the localized polymerization of lignin required for Casparian strip biogenesis in the cell wall and for attachment of the strip to the plasma membrane to seal the apoplast. We reveal a Casparian strip lignification mechanism that requires cooperation between DPs and the Schengen pathway. Furthermore, we demonstrate that DPs directly mediate lignin polymerization as part of this mechanism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lignina , Raíces de Plantas , Arabidopsis/metabolismo , Pared Celular/metabolismo , Difusión , Lignina/metabolismo , Raíces de Plantas/metabolismo , Polimerizacion , Proteínas de Arabidopsis/metabolismo
5.
Nat Commun ; 12(1): 2320, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875659

RESUMEN

Lignin is a complex polymer deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/metabolismo , Lignina/metabolismo , Raíces de Plantas/metabolismo , Agua/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Pared Celular/genética , Difusión , Lignina/química , Microscopía Fluorescente/métodos , Mutación , Fenilpropionatos/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , RNA-Seq/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xilema/genética , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA