Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biosens Bioelectron ; 254: 116223, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518561

RESUMEN

Pursuing accurate, swift, and durable pH sensors is important across numerous fields, encompassing healthcare, environmental surveillance, and agriculture. In particular, the emphasis on real-time pH monitoring during cell cultivation has become increasingly pronounced in the current scientific environment-a crucial element being diligently researched to ensure optimal cell production. Both polyaniline (PANi) and iridium oxide (IrOx) show their worth in pH sensing, yet they come with challenges. Single-PANi-layered pH sensors often grapple with diminished sensitivity and lagging responses, while electrodeposited IrOx structures exhibit poor adhesion, leading to their separation from metallic substrates-a trait undesirable for a consistently stable, long-term pH sensor. This paper introduces a bi-layered PANi-IrOx pH sensor, strategically leveraging the advantages of both materials. The results presented here underscore the sensitivity enhancement of binary-phased framework, faster response time, and more robust structure than prior work. Through this synergistic strategy, we demonstrate the potential of integrating different phases to overcome the inherent constraints of individual materials, setting the stage for advanced pH-sensing solutions.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Técnicas de Cultivo de Célula , Compuestos de Anilina/química , Concentración de Iones de Hidrógeno
2.
J Innov Opt Health Sci ; 16(3)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38550850

RESUMEN

The tumor microenvironment (TME) promotes pro-tumor and anti-inflammatory metabolisms and suppresses the host immune system. It prevents immune cells from fighting against cancer effectively, resulting in limited efficacy of many current cancer treatment modalities. Different therapies aim to overcome the immunosuppressive TME by combining various approaches to synergize their effects for enhanced anti-tumor activity and augmented stimulation of the immune system. Immunotherapy has become a major therapeutic strategy because it unleashes the power of the immune system by activating, enhancing, and directing immune responses to prevent, control, and eliminate cancer. Phototherapy uses light irradiation to induce tumor cell death through photothermal, photochemical, and photo-immunological interactions. Phototherapy induces tumor immunogenic cell death, which is a precursor and enhancer for anti-tumor immunity. However, phototherapy alone has limited effects on long-term and systemic anti-tumor immune responses. Phototherapy can be combined with immunotherapy to improve the tumoricidal effect by killing target tumor cells, enhancing immune cell infiltration in tumors, and rewiring pathways in the TME from anti-inflammatory to pro-inflammatory. Phototherapy-enhanced immunotherapy triggers effective cooperation between innate and adaptive immunities, specifically targeting the tumor cells, whether they are localized or distant. Herein, the successes and limitations of phototherapy combined with other cancer treatment modalities will be discussed. Specifically, we will review the synergistic effects of phototherapy combined with different cancer therapies on tumor elimination and remodeling of the immunosuppressive TME. Overall, phototherapy, in combination with other therapeutic modalities, can establish anti-tumor pro-inflammatory phenotypes in activated tumor-infiltrating T cells and B cells and activate systemic anti-tumor immune responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA