Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photochem Photobiol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728432

RESUMEN

Tumor-targeted, activatable photoimmunotherapy (taPIT) has been shown to selectively destroy tumor in a metastatic mouse model. However, the photoimmunoconjugate (PIC) used for taPIT includes a small fraction of non-covalently associated (free) benzoporphyrin derivative (BPD), which leads to non-specific killing in vitro. Here, we report a new treatment protocol for patient-derived primary tumor cell cultures ultrasensitive to BPD photodynamic therapy (BPD-PDT). Based on free BPD efflux dynamics, the updated in vitro taPIT protocol precludes non-specific BPD-PDT by silencing the effect of free BPD. Following incubation with PIC, incubating cells with PIC-free medium allows time for expulsion of free BPD whereas BPD covalently bound to PIC fragments is retained. Administration of the light dose after the intracellular free BPD drops below the threshold for inducing cell death helps to mitigate non-specific damage. In this study, we tested two primary ovarian tumor cell lines that are intrinsically chemoresistant, yet ultrasensitive to BPD-PDT such that small amounts of free BPD (a few percent of the total BPD dose) lead to potent induction of cell death upon irradiation. The modifications in the protocol suggested here improve in vitro taPIT experiments that lack in vivo mechanisms of free BPD clearance (i.e., lymph and blood flow).

2.
Sci Rep ; 12(1): 19341, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369334

RESUMEN

Photodynamic therapy (PDT) research would benefit from an automated, low-cost, and easy-to-use cell culture light treatment setup capable of illuminating multiple well replicates within standard multiwell plate formats. We present an LED-array suitable for performing high-throughput cell culture PDT experiments. The setup features a water-cooling loop to keep the LED-array temperature nearly constant, thus stabilizing the output power and spectrum. The setup also features two custom-made actuator arms, in combination with a pulse-width-modulation (PWM) technique, to achieve programmable and automatic light exposures for PDT. The setup operates at ~ 690 nm (676-702 nm, spectral output full-width half-maximum) and the array module can be readily adapted to other LED wavelengths. This system provides an illumination field with adjustable irradiance up to 400 mW/cm2 with relatively high spectral and power stability comparing with previously reported LED-based setups. The light doses provided by the LED array were validated with comparison to traditional laser PDT. This open-source illumination platform (including the detailed technical description, fabrication protocols, and parts list provided here) helps to make custom light sources more accessible and of practical use for photomedicine research.


Asunto(s)
Fotoquimioterapia , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Iluminación , Técnicas de Cultivo de Célula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA