Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 293(15): 5522-5531, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29463678

RESUMEN

The StARkin superfamily comprises proteins with steroidogenic acute regulatory protein-related lipid transfer (StART) domains that are implicated in intracellular, non-vesicular lipid transport. A new family of membrane-anchored StARkins was recently identified, including six members, Lam1-Lam6, in the yeast Saccharomyces cerevisiae. Lam1-Lam4 are anchored to the endoplasmic reticulum (ER) membrane at sites where the ER is tethered to the plasma membrane and proposed to be involved in sterol homeostasis in yeast. To better understand the biological roles of these proteins, we carried out a structure-function analysis of the second StARkin domain of Lam4, here termed Lam4S2. NMR experiments indicated that Lam4S2 undergoes specific conformational changes upon binding sterol, and fluorescence-based assays revealed that it catalyzes sterol transport between vesicle populations in vitro, exhibiting a preference for vesicles containing anionic lipids. Using such vesicles, we found that sterols are transported at a rate of ∼50 molecules per Lam4S2 per minute. Crystal structures of Lam4S2, with and without bound sterol, revealed a largely hydrophobic but surprisingly accessible sterol-binding pocket with the 3-OH group of the sterol oriented toward its base. Single or multiple alanine or aspartic acid replacements of conserved lysine residues in a basic patch on the surface of Lam4S2 near the likely sterol entry/egress site strongly attenuated sterol transport. Our results suggest that Lam4S2 engages anionic membranes via a basic surface patch, enabling "head-first" entry of sterol into the binding pocket followed by partial closure of the entryway. Reversal of these steps enables sterol egress.


Asunto(s)
Antiportadores/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Esteroles/química , Antiportadores/genética , Antiportadores/metabolismo , Transporte Biológico Activo/fisiología , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo
2.
Hamostaseologie ; 42(6): 381-389, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36549290

RESUMEN

Blood coagulation analysis is characterized by the application of a variety of materials, reagents, and analyzers for the determination of the same parameter, or analyte, by different laboratories worldwide. Accordingly, the application of common reference intervals, that, by definition, would represent a "range of values (of a certain analyte) that is deemed normal for a physiological measurement in healthy persons," is difficult to implement without harmonization of procedures. In fact, assay-specific reference intervals are usually established to allow for the discrimination of normal and abnormal values during evaluation of patient results. While such assay-specific reference intervals are often determined by assay manufacturers and subsequently adopted by customer laboratories, verification of transferred values is still mandatory to confirm applicability on site. The same is true for reference intervals that have been adopted from other laboratories, published information, or determined by indirect data mining approaches. In case transferable reference intervals are not available for a specific assay, a direct recruiting approach may or needs to be applied. In comparison to transferred reference interval verification, however, the direct recruiting approach requires a significantly higher number of well-defined samples to be collected and analyzed. In the present review, we aim to give an overview on the above-mentioned aspects and procedures, also with respect to relevant standards, regulations, guidelines, but also challenges for both, assay manufacturers and coagulation laboratories.


Asunto(s)
Coagulación Sanguínea , Laboratorios , Humanos , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA