RESUMEN
Pallidal deep brain stimulation (DBS) is an important option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the globus pallidus internus (GPi). The mechanisms of GPi-DBS are far from understood. Although a disturbance of striatal function is thought to play a key role in dystonia, the effects of DBS on cortico-striatal function are unknown. We hypothesised that DBS, via axonal backfiring, or indirectly via thalamic and cortical coupling, alters striatal function. We tested this hypothesis in the dtsz hamster, an animal model of inherited generalised, paroxysmal dystonia. Hamsters (dystonic and non-dystonic controls) were bilaterally implanted with stimulation electrodes in the GPi. DBS (130 Hz), and sham DBS, were performed in unanaesthetised animals for 3 h. Synaptic cortico-striatal field potentials, as well as miniature excitatory postsynaptic currents (mEPSC) and firing properties of medium spiny striatal neurones were recorded in brain slice preparations obtained immediately after EPN-DBS. The main findings were as follows: a. DBS increased cortico-striatal evoked responses in healthy, but not in dystonic tissue. b. Commensurate with this, DBS increased inhibitory control of these evoked responses in dystonic, and decreased inhibitory control in healthy tissue. c. Further, DBS reduced mEPSC frequency strongly in dystonic, and less prominently in healthy tissue, showing that also a modulation of presynaptic mechanisms is likely involved. d. Cellular properties of medium-spiny neurones remained unchanged. We conclude that DBS leads to dampening of cortico-striatal communication, and restores intrastriatal inhibitory tone.
Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Estimulación Encefálica Profunda/métodos , Distonía/fisiopatología , Globo Pálido/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Comunicación Celular/fisiología , Cricetinae , Estimulación Encefálica Profunda/instrumentación , Modelos Animales de Enfermedad , Distonía/terapia , Electrodos Implantados , Potenciales Postsinápticos Excitadores/fisiología , Mesocricetus , Red Nerviosa/fisiologíaRESUMEN
Deep brain stimulation (DBS) of the globus pallidus internus (GPi, entopeduncular nucleus, EPN, in rodents) has become important for the treatment of generalized dystonia, a severe and often intractable movement disorder. It is unclear if lower frequencies of GPi-DBS or stimulations of the subthalamic nucleus (STN) are of advantage. In the present study, the main objective was to examined the effects of bilateral EPN-DBS at different frequencies (130 Hz, 40 Hz, 15 Hz) on the severity of dystonia in the dtsz mutant hamster. In addition, STN stimulations were done at a frequency, proven to be effective by the present EPN-DBS in dystonic hamsters. In order to obtain precise bilateral electrical stimuli with magnitude of 50 µA, a pulse width of 60 µs and defined frequencies, it was necessary to develop a new optimized stimulator prior to the experiments. Since the individual highest severity of dystonic episodes is known to be reached within three hours after induction in dtsz hamsters, the duration of DBS was 180 min. During DBS with 130 Hz the severity of dystonia was significantly lower within the third hour than without DBS in the same animals (p < 0.05). DBS with 40 Hz tended to exert antidystonic effects after three hours, while 15 Hz stimulations of the EPN and 130 Hz stimulations of the STN failed to show any effects on the severity. DBS of the EPN at 130 Hz was most effective against generalized dystonia in the dtsz mutant. The response to EPN-DBS confirms that the dtsz mutant is suitable to further investigate the effects of long-term DBS on severity of dystonia and neuronal network activities, important to give insights into the mechanisms of DBS.
Asunto(s)
Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Distonía , Animales , Cricetinae , Modelos Animales de Enfermedad , Núcleo Entopeduncular/fisiología , Femenino , Masculino , Fenotipo , Núcleo Subtalámico/fisiologíaRESUMEN
WLAN mesh networks are one of the key technologies for upcoming smart city applications and are characterized by a flexible and low-cost deployment. The standard amendment IEEE 802.11s introduces low-level mesh interoperability at the WLAN MAC layer. However, scalability limitations imposed by management traffic overhead, routing delays, medium contention, and interference are common issues in wireless mesh networks and also apply to IEEE 802.11s networks. Possible solutions proposed in the literature recommend a divide-and-conquer scheme that partitions the network into clusters and forms smaller collision and broadcast domains by assigning orthogonal channels. We present CHaChA (Clustering Heuristic and Channel Assignment), a distributed cross-layer approach for cluster formation and channel assignment that directly integrates the default IEEE 802.11s mesh protocol information and operating modes, retaining unrestricted compliance to the WLAN standard. Our concept proposes further mechanisms for dynamic cluster adaptation, including subsequent cluster joining, isolation and fault detection, and node roaming for cluster balancing. The practical performance of CHaChA is demonstrated in a real-world 802.11s testbed. We first investigate clustering reproducibility, duration, and communication overhead in static network scenarios of different sizes. We then validate our concepts for dynamic cluster adaptation, considering topology changes that are likely to occur during long-term network operation and maintenance.
RESUMEN
Acute patient treatment can heavily profit from AI-based assistive and decision support systems, in terms of improved patient outcome as well as increased efficiency. Yet, only very few applications have been reported because of the limited accessibility of device data due to the lack of adoption of open standards, and the complexity of regulatory/approval requirements for AI-based systems. The fragmentation of data, still being stored in isolated silos, results in limited accessibility for AI in healthcare and machine learning is complicated by the loss of semantics in data conversions. We outline a reference model that addresses the requirements of innovative AI-based research systems as well as the clinical reality. The integration of networked medical devices and Clinical Repositories based on open standards, such as IEEE 11073 SDC and HL7 FHIR, will foster novel assistance and decision support. The reference model will make point-of-care device data available for AI-based approaches. Semantic interoperability between Clinical and Research Repositories will allow correlating patient data, device data, and the patient outcome. Thus, complete workflows in high acuity environments can be analysed. Open semantic interoperability will enable the improvement of patient outcome and the increase of efficiency on a large scale and across clinical applications.
Asunto(s)
Inteligencia Artificial , Cuidados Críticos/métodos , Sistemas de Apoyo a Decisiones Clínicas , Procedimientos Quirúrgicos Operativos/métodos , Eficiencia Organizacional , Humanos , Flujo de TrabajoRESUMEN
BACKGROUND: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a successful treatment option in Parkinson's disease (PD) for different motor and non-motor symptoms, but has been linked to postoperative cognitive impairment. AIM: Since both dopaminergic and norepinephrinergic neurotransmissions play important roles in symptom development, we analysed STN-DBS effects on dopamine and norepinephrine availability in different brain regions and morphological alterations of catecholaminergic neurons in the 6-hydroxydopamine PD rat model. METHODS: We applied one week of continuous unilateral STN-DBS or sham stimulation, respectively, in groups of healthy and 6-hydroxydopamine-lesioned rats to quantify dopamine and norepinephrine contents in the striatum, olfactory bulb and dentate gyrus. In addition, we analysed dopaminergic cell counts in the substantia nigra pars compacta and area tegmentalis ventralis and norepinephrinergic neurons in the locus coeruleus after one and six weeks of STN-DBS. RESULTS: In 6-hydroxydopamine-lesioned animals, one week of STN-DBS did not alter dopamine levels, while striatal norepinephrine levels were decreased. However, neither one nor six weeks of STN-DBS altered dopaminergic neuron numbers in the midbrain or norepinephrinergic neuron counts in the locus coeruleus. Dopaminergic fibre density in the dorsal and ventral striatum also remained unchanged after six weeks of STN-DBS. In healthy animals, one week of STN-DBS resulted in increased dopamine levels in the olfactory bulb and decreased contents in the dentate gyrus, but had no effects on norepinephrine availability. CONCLUSIONS: STN-DBS modulates striatal norepinephrinergic neurotransmission in a PD rat model. Additional behavioural studies are required to investigate the functional impact of this finding.
Asunto(s)
Estimulación Encefálica Profunda , Modelos Animales de Enfermedad , Dopamina , Norepinefrina , Oxidopamina , Núcleo Subtalámico , Transmisión Sináptica , Animales , Núcleo Subtalámico/metabolismo , Estimulación Encefálica Profunda/métodos , Masculino , Oxidopamina/toxicidad , Transmisión Sináptica/fisiología , Dopamina/metabolismo , Norepinefrina/metabolismo , Ratas , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Neuronas Dopaminérgicas/metabolismo , Bulbo Olfatorio/metabolismo , Ratas Sprague-Dawley , Cuerpo Estriado/metabolismo , Giro Dentado/metabolismo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/terapia , Trastornos Parkinsonianos/fisiopatologíaRESUMEN
BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been a highly effective treatment option for mid-to-late-stage Parkinson's disease (PD) for decades. Besides direct effects on brain networks, neuroprotective effects of STN-DBS - potentially via alterations of growth factor expression levels - have been proposed as additional mechanisms of action. OBJECTIVE: In the context of clarifying DBS mechanisms, we analyzed brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) levels in the basal ganglia, motor and parietal cortices, and dentate gyrus in an animal model of stable, severe dopaminergic deficiency. METHODS: We applied one week of continuous unilateral STN-DBS in a group of stable 6-hydroxydopamine (6-OHDA) hemiparkinsonian rats (6-OHDASTIM) in comparison to a 6-OHDA control group (6-OHDASHAM) as well as healthy controls (CTRLSTIM and CTRLSHAM). BDNF and GDNF levels were determined via ELISAs. RESULTS: The 6-OHDA lesion did not result in a persistent alteration in either BDNF or GDNF levels in a model of severe dopaminergic deficiency after completion of the dopaminergic degeneration. STN-DBS modestly increased BDNF levels in the entopeduncular nucleus, but even impaired BDNF and GDNF expression in cortical areas. CONCLUSIONS: STN-DBS does not increase growth factor expression when applied to a model of completed, severe dopaminergic deficiency in contrast to other studies in models of modest and ongoing dopaminergic degeneration. In healthy controls, STN-DBS does not influence BDNF or GDNF expression. We consider these findings relevant for clinical purposes since DBS in PD is usually applied late in the course of the disease.
Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Ratas , Animales , Núcleo Subtalámico/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Oxidopamina/toxicidad , Oxidopamina/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismoRESUMEN
Context.Long-term deep brain stimulation (DBS) studies in rodents are of crucial importance for research progress in this field. However, most stimulation devices require jackets or large head-mounted systems which severely affect mobility and general welfare influencing animals' behavior.Objective.To develop a preclinical neurostimulation implant system for long-term DBS research in small animal models.Approach.We propose a low-cost dual-channel DBS implant called software defined implantable platform (STELLA) with a printed circuit board size of Ø13 × 3.3 mm, weight of 0.6 g and current consumption of 7.6µA/3.1 V combined with an epoxy resin-based encapsulation method.Main results.STELLA delivers charge-balanced and configurable current pulses with widely used commercial electrodes. Whilein vitrostudies demonstrate at least 12 weeks of error-free stimulation using a CR1225 battery, our calculations predict a battery lifetime of up to 3 years using a CR2032. Exemplary application for DBS of the subthalamic nucleus in adult rats demonstrates that fully-implanted STELLA neurostimulators are very well-tolerated over 42 days without relevant stress after the early postoperative phase resulting in normal animal behavior. Encapsulation, external control and monitoring of function proved to be feasible. Stimulation with standard parameters elicited c-Fos expression by subthalamic neurons demonstrating biologically active function of STELLA.Significance.We developed a fully implantable, scalable and reliable DBS device that meets the urgent need for reverse translational research on DBS in freely moving rodent disease models including sensitive behavioral experiments. We thus add an important technology for animal research according to 'The Principle of Humane Experimental Technique'-replacement, reduction and refinement (3R). All hardware, software and additional materials are available under an open source license.
Asunto(s)
Estimulación Encefálica Profunda , Núcleo Subtalámico , Animales , Electrodos Implantados , Neuroestimuladores Implantables , Ratas , Roedores , Programas InformáticosRESUMEN
To translate recent advances in medical device interoperability research into clinical practice, standards are being developed that specify precise requirements towards the network representation of particular medical devices connecting through ISO/IEEE 11073 SDC. The present contribution supplements this protocol standard with specific models for endoscopic camera systems, light sources, insufflators, and pumps. Through industry consensus, these new standards provide modular means to describe the devices' capabilities and modes of interaction in a service-oriented medical device communication architecture. This enables seamless data exchange and the potential for new assistive systems to support the caregiver.
Asunto(s)
EndoscopíaRESUMEN
The aim of the study was to establish electrical stimulation parameters in order to improve cell growth and viability of human adipose-derived stem cells (hADSC) when compared to non-stimulated cells in vitro. hADSC were exposed to continuous electrical stimulation with 1.7 V AC/20 Hz. After 24, 72 h and 7 days, cell number, cellular surface coverage and cell proliferation were assessed. In addition, cell cycle analysis was carried out after 3 and 7 days. After 24 h, no significant alterations were observed for stimulated cells. At day 3, stimulated cells showed a 4.5-fold increase in cell numbers, a 2.7-fold increase in cellular surface coverage and a significantly increased proliferation. Via cell cycle analysis, a significant increase in the G2/M phase was monitored for stimulated cells. Contrastingly, after 7 days, the non-stimulated group exhibited a 11-fold increase in cell numbers and a 4-fold increase in cellular surface coverage as well as a significant increase in cell proliferation. Moreover, the stimulated cells displayed a shift to the G1 and sub-G1 phase, indicating for metabolic arrest and apoptosis initiation. In accordance, continuous electrical stimulation of hADSC led to a significantly increased cell growth and proliferation after 3 days. However, longer stimulation periods such as 7 days caused an opposite result indicating initiation of apoptosis.
RESUMEN
Modern surgical departments are characterized by a high degree of automation supporting complex procedures. It recently became apparent that integrated operating rooms can improve the quality of care, simplify clinical workflows, and mitigate equipment-related incidents and human errors. Particularly using computer assistance based on data from integrated surgical devices is a promising opportunity. However, the lack of manufacturer-independent interoperability often prevents the deployment of collaborative assistive systems. The German flagship project OR.NET has therefore developed, implemented, validated, and standardized concepts for open medical device interoperability. This paper describes the universal OR.NET interoperability concept enabling a safe and dynamic manufacturer-independent interconnection of point-of-care (PoC) medical devices in the operating room and the whole clinic. It is based on a protocol specifically addressing the requirements of device-to-device communication, yet also provides solutions for connecting the clinical information technology (IT) infrastructure. We present the concept of a service-oriented medical device architecture (SOMDA) as well as an introduction to the technical specification implementing the SOMDA paradigm, currently being standardized within the IEEE 11073 service-oriented device connectivity (SDC) series. In addition, the Session concept is introduced as a key enabler for safe device interconnection in highly dynamic ensembles of networked medical devices; and finally, some security aspects of a SOMDA are discussed.
Asunto(s)
Redes de Comunicación de Computadores/normas , Equipos y Suministros/normas , Quirófanos , Humanos , Flujo de TrabajoRESUMEN
Today's landscape of medical devices is dominated by stand-alone systems and proprietary interfaces lacking cross-vendor interoperability. This complicates or even impedes the innovation of novel, intelligent assistance systems relying on the collaboration of medical devices. Emerging approaches use the service-oriented architecture (SOA) paradigm based on Internet protocol (IP) to enable communication between medical devices. While this works well for scenarios with no or only soft timing constraints, the underlying best-effort communication scheme is insufficient for time critical data. Real-time (RT) networks are able to reliably guarantee fixed latency boundaries, for example, by using time division multiple access (TDMA) communication patterns. However, deterministic RT networks come with their own limitations such as tedious, inflexible configuration and a more restricted bandwidth allocation. In this contribution we overcome the drawbacks of both approaches by describing and implementing mechanisms that allow the two networks to interact. We introduce the first implementation of a medical device network that offers hard RT guarantees for control and sensor data and integrates into SOA networks. Based on two application examples we show how the flexibility of SOA networks and the reliability of RT networks can be combined to achieve an open network infrastructure for medical devices in the operating room (OR).
Asunto(s)
Quirófanos , Redes de Comunicación de Computadores/instrumentación , Internet , Reproducibilidad de los ResultadosRESUMEN
The number of devices within an operating room (OR) increases continuously as well as the complexity of the complete system. One key enabler to handle the complexity is an interoperable and vendor independent system of networked medical devices. To build up such an interoperable system we use the proposed IEEE 11073 SDC standards (IEEE P11073-10207, -20701, -20702) for networked point-of-care (PoC) and surgical devices. One of the major problems within the OR is that typically every device has its own control unit. This leads to unsatisfying situations like a high number of foot switches that causes operating errors or the problem that the physician cannot reach the control unit of the device where parameters have to be changed or an activation should be triggered. Dynamically assignable controls will solve these problems. This paper describes mechanisms that allow a safe remote activation of safety critical device functionalities based on a potentially unsafe off-the-shelf network with problems like connection loss and jitter. The proposed systems is based on a periodic reactivation of the device functionality and the additional use safety related information that is included into the activate operation command. The main advantage is that all described mechanisms make use of the self-description capability provided by the IEEE 11073 SDC. This enables a real interoperability and plug-and-play functionality because both the medical device and the control client do not need any a priori knowledge about each other.
Asunto(s)
Seguridad de Equipos , Equipos y Suministros/normas , Quirófanos , Sistemas de Atención de Punto , Sistemas de Computación , Diseño de Equipo , Humanos , Procesamiento de Señales Asistido por Computador , Tecnología InalámbricaRESUMEN
What is the recommended diagnostic work-up of female genital anomalies according to the European Society of Human Reproduction and Embryology (ESHRE)/European Society for Gynaecological Endoscopy (ESGE) system? The ESHRE/ESGE consensus for the diagnosis of female genital anomalies is presented. Accurate diagnosis of congenital anomalies still remains a clinical challenge due to the drawbacks of the previous classification systems and the non-systematic use of diagnostic methods with varying accuracy, with some of them quite inaccurate. Currently, a wide range of non-invasive diagnostic procedures are available, enriching the opportunity to accurately detect the anatomical status of the female genital tract, as well as a new objective and comprehensive classification system with well-described classes and sub-classes. The ESHRE/ESGE Congenital Uterine Anomalies (CONUTA) Working Group established an initiative with the goal of developing a consensus for the diagnosis of female genital anomalies. The CONUTA working group and imaging experts in the field have been appointed to run the project. The consensus is developed based on (1) evaluation of the currently available diagnostic methods and, more specifically, of their characteristics with the use of the experts panel consensus method and of their diagnostic accuracy performing a systematic review of evidence and (2) consensus for (a) the definition of where and how to measure uterine wall thickness and (b) the recommendations for the diagnostic work-up of female genital anomalies, based on the results of the previous evaluation procedure, with the use of the experts panel consensus method. Uterine wall thickness is defined as the distance between interostial line and external uterine profile at the midcoronal plane of the uterus; alternatively, if a coronal plane is not available, the mean anterior and posterior uterine wall thickness at the longitudinal plane could be used. Gynaecological examination and two-dimensional ultrasound (2D US) are recommended for the evaluation of asymptomatic women. Three-dimensional ultrasound (3D US) is recommended for the diagnosis of female genital anomalies in "symptomatic" patients belonging to high-risk groups for the presence of a female genital anomaly and in any asymptomatic woman suspected to have an anomaly from routine avaluation. Magnetic resonance imaging (MRI) and endoscopic evaluation are recommended for the sub-group of patients with suspected complex anomalies or in diagnostic dilemmas. Adolescents with symptoms suggestive for the presence of a female genital anomaly should be thoroughly evaluated with 2D US, 3D US, MRI and endoscopy. The various diagnostic methods should be used in a proper way and evaluated by experts to avoid mis-, over- and underdiagnosis. The role of a combined ultrasound examination and outpatient hysteroscopy should be prospectively evaluated. It is a challenge for further research, based on diagnosis, to objectively evaluate the clinical consequences related to various degrees of uterine deformity.
RESUMEN
Surgical procedures become more and more complex and the number of medical devices in an operating room (OR) increases continuously. Today's vendor-dependent solutions for integrated ORs are not able to handle this complexity. They can only form isolated solutions. Furthermore, high costs are a result of vendor-dependent approaches. Thus we present a service-oriented device communication for distributed medical systems that enables the integration and interconnection between medical devices among each other and to (medical) information systems, including plug-and-play functionality. This system will improve patient's safety by making technical complexity of a comprehensive integration manageable. It will be available as open standards that are part of the IEEE 11073 family of standards. The solution consists of a service-oriented communication technology, the so called Medical Devices Profile for Web Services (MDPWS), a Domain Information & Service Model, and a binding between the first two mechanisms. A proof of this concept has been done with demonstrators of real world OR devices.