Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Artículo en Inglés | MEDLINE | ID: mdl-30782998

RESUMEN

During the intraerythrocytic asexual cycle malaria parasites acquire nutrients and other solutes through a broad selectivity channel localized at the membrane of the infected erythrocyte termed the plasmodial surface anion channel (PSAC). The protein product of the Plasmodium falciparum clonally variant clag3.1 and clag3.2 genes determines PSAC activity. Switches in the expression of clag3 genes, which are regulated by epigenetic mechanisms, are associated with changes in PSAC-dependent permeability that can result in resistance to compounds toxic for the parasite, such as blasticidin S. Here, we investigated whether other antimalarial drugs require CLAG3 to reach their intracellular target and consequently are prone to parasite resistance by epigenetic mechanisms. We found that the bis-thiazolium salts T3 (also known as albitiazolium) and T16 require the product of clag3 genes to enter infected erythrocytes. P. falciparum populations can develop resistance to these compounds via the selection of parasites with dramatically reduced expression of both genes. However, other compounds previously demonstrated or predicted to enter infected erythrocytes through transport pathways absent from noninfected erythrocytes, such as fosmidomycin, doxycycline, azithromycin, lumefantrine, or pentamidine, do not require expression of clag3 genes for their antimalarial activity. This suggests that they use alternative CLAG3-independent routes to access parasites. Our results demonstrate that P. falciparum can develop resistance to diverse antimalarial compounds by epigenetic changes in the expression of clag3 genes. This is of concern for drug development efforts because drug resistance by epigenetic mechanisms can arise quickly, even during the course of a single infection.


Asunto(s)
Antimaláricos/uso terapéutico , Eritrocitos/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Epigénesis Genética , Malaria Falciparum/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
3.
Front Cell Infect Microbiol ; 14: 1408451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828264

RESUMEN

Recent studies indicate that human spleen contains over 95% of the total parasite biomass during chronic asymptomatic infections caused by Plasmodium vivax. Previous studies have demonstrated that extracellular vesicles (EVs) secreted from infected reticulocytes facilitate binding to human spleen fibroblasts (hSFs) and identified parasite genes whose expression was dependent on an intact spleen. Here, we characterize the P. vivax spleen-dependent hypothetical gene (PVX_114580). Using CRISPR/Cas9, PVX_114580 was integrated into P. falciparum 3D7 genome and expressed during asexual stages. Immunofluorescence analysis demonstrated that the protein, which we named P. vivax Spleen-Dependent Protein 1 (PvSDP1), was located at the surface of infected red blood cells in the transgenic line and this localization was later confirmed in natural infections. Plasma-derived EVs from P. vivax-infected individuals (PvEVs) significantly increased cytoadherence of 3D7_PvSDP1 transgenic line to hSFs and this binding was inhibited by anti-PvSDP1 antibodies. Single-cell RNAseq of PvEVs-treated hSFs revealed increased expression of adhesion-related genes. These findings demonstrate the importance of parasite spleen-dependent genes and EVs from natural infections in the formation of intrasplenic niches in P. vivax, a major challenge for malaria elimination.


Asunto(s)
Vesículas Extracelulares , Malaria Vivax , Plasmodium vivax , Proteínas Protozoarias , Bazo , Vesículas Extracelulares/metabolismo , Plasmodium vivax/genética , Plasmodium vivax/metabolismo , Humanos , Bazo/metabolismo , Bazo/parasitología , Malaria Vivax/parasitología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Eritrocitos/parasitología , Eritrocitos/metabolismo , Fibroblastos/parasitología , Fibroblastos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiología , Adhesión Celular , Interacciones Huésped-Parásitos
4.
Trends Parasitol ; 38(6): 435-449, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35301987

RESUMEN

The capacity of malaria parasites to respond to changes in their environment at the transcriptional level has been the subject of debate, but recent evidence has unambiguously demonstrated that Plasmodium spp. can produce adaptive transcriptional responses when exposed to some specific types of stress. These include metabolic conditions and febrile temperature. The Plasmodium falciparum protective response to thermal stress is similar to the response in other organisms, but it is regulated by a transcription factor evolutionarily unrelated to the conserved transcription factor that drives the heat shock (HS) response in most eukaryotes. Of the many genes that change expression during HS, only a subset constitutes an authentic response that contributes to parasite survival.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Malaria/parasitología , Malaria Falciparum/parasitología , Parásitos/fisiología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Factores de Transcripción/genética
5.
Methods Mol Biol ; 2369: 165-185, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34313989

RESUMEN

In Plasmodium falciparum, the parasite responsible for the most severe forms of human malaria, many fundamental processes are controlled at the transcriptional level. Studies on diverse aspects of basic parasite biology as well as molecular epidemiology studies often rely on the ability to accurately measure transcript levels, but this is complicated by the cyclic expression patterns of the majority of malaria parasite genes. Here, we provide a complete workflow to measure transcript levels in P. falciparum intraerythrocytic blood stages, overcoming the confounding factors that are commonly encountered. The method described covers all the steps from synchronization of parasite cultures to reverse transcriptase quantitative PCR (RT-qPCR) analysis.


Asunto(s)
Plasmodium falciparum , Humanos , Malaria Falciparum , Plasmodium falciparum/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Nat Microbiol ; 6(9): 1163-1174, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34400833

RESUMEN

Periodic fever is a characteristic clinical feature of human malaria, but how parasites survive febrile episodes is not known. Although the genomes of Plasmodium species encode a full set of chaperones, they lack the conserved eukaryotic transcription factor HSF1, which activates the expression of chaperones following heat shock. Here, we show that PfAP2-HS, a transcription factor in the ApiAP2 family, regulates the protective heat-shock response in Plasmodium falciparum. PfAP2-HS activates the transcription of hsp70-1 and hsp90 at elevated temperatures. The main binding site of PfAP2-HS in the entire genome coincides with a tandem G-box DNA motif in the hsp70-1 promoter. Engineered parasites lacking PfAP2-HS have reduced heat-shock survival and severe growth defects at 37 °C but not at 35 °C. Parasites lacking PfAP2-HS also have increased sensitivity to imbalances in protein homeostasis (proteostasis) produced by artemisinin, the frontline antimalarial drug, or the proteasome inhibitor epoxomicin. We propose that PfAP2-HS contributes to the maintenance of proteostasis under basal conditions and upregulates specific chaperone-encoding genes at febrile temperatures to protect the parasite against protein damage.


Asunto(s)
Fiebre/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Factores de Transcripción/metabolismo , Antimaláricos/farmacología , Artemisininas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Calor , Humanos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Proteostasis/efectos de los fármacos , Proteínas Protozoarias/genética , Factores de Transcripción/genética
7.
Brief Funct Genomics ; 18(5): 329-341, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31114839

RESUMEN

Transcriptional differences enable the generation of alternative phenotypes from the same genome. In malaria parasites, transcriptional plasticity plays a major role in the process of adaptation to fluctuations in the environment. Multiple studies with culture-adapted parasites and field isolates are starting to unravel the different transcriptional alternatives available to Plasmodium falciparum and the underlying molecular mechanisms. Here we discuss how epigenetic variation, directed transcriptional responses and also genetic changes that affect transcript levels can all contribute to transcriptional variation and, ultimately, parasite survival. Some transcriptional changes are driven by stochastic events. These changes can occur spontaneously, resulting in heterogeneity within parasite populations that provides the grounds for adaptation by dynamic natural selection. However, transcriptional changes can also occur in response to external cues. A better understanding of the mechanisms that the parasite has evolved to alter its transcriptome may ultimately contribute to the design of strategies to combat malaria to which the parasite cannot adapt.


Asunto(s)
Cromatina/metabolismo , Plasmodium falciparum/genética , Transcripción Genética , Adaptación Fisiológica , Cromatina/química , Cromatina/enzimología , Cromatina/genética , Epigénesis Genética , Variación Genética , Genoma de Protozoos , Mutación , Fenotipo , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo , Selección Genética , Análisis de la Célula Individual , Transcriptoma/genética
8.
PLoS One ; 11(10): e0165358, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27780272

RESUMEN

The growth phenotype of asexual blood stage malaria parasites can influence their virulence and also their ability to survive and achieve transmission to the next host, but there are few methods available to characterise parasite growth parameters in detail. We developed a new assay to measure growth rates at different starting parasitaemias in a 96-well format and applied it to characterise the growth of Plasmodium falciparum lines 3D7-A and 3D7-B, previously shown to have different invasion rates and to use different invasion pathways. Using this simple and accurate assay we found that 3D7-B is more sensitive to high initial parasitaemia than 3D7-A. This result indicates that different parasite lines show variation in their levels of density-dependent growth inhibition. We also developed a new assay to compare the duration of the asexual blood cycle between different parasite lines. The assay is based on the tight synchronisation of cultures to a 1 h parasite age window and the subsequent monitoring of schizont bursting and formation of new rings by flow cytometry. Using this assay we observed differences in the duration of the asexual blood cycle between parasite lines 3D7 and HB3. These two new assays will be useful to characterise variation in growth-related parameters and to identify growth phenotypes associated with the targeted deletion of specific genes or with particular genomic, transcriptomic or proteomic patterns. Furthermore, the identification of density-dependent growth inhibition as an intrinsic parasite property that varies between parasite lines expands the repertoire of measurable growth-related phenotypic traits that have the potential to influence the outcome of a malarial blood infection.


Asunto(s)
Parasitemia/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Eritrocitos/parasitología , Citometría de Flujo , Genómica , Humanos , Estadios del Ciclo de Vida , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Merozoítos/fisiología , Análisis por Micromatrices , Parasitemia/diagnóstico , Fenotipo , Plasmodium falciparum/fisiología , Proteómica , Esquizontes/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA