Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37883062

RESUMEN

Metabolism is crucial for development through supporting cell growth, energy production, establishing cell identity, developmental signaling and pattern formation. In many model systems, development occurs alongside metabolic transitions as cells differentiate and specialize in metabolism that supports new functions. Some cells exhibit metabolic flexibility to circumvent mutations or aberrant signaling, whereas other cell types require specific nutrients for developmental progress. Metabolic gradients and protein modifications enable pattern formation and cell communication. On an organism level, inadequate nutrients or stress can limit germ cell maturation, implantation and maturity through diapause, which slows metabolic activities until embryonic activation under improved environmental conditions.


Asunto(s)
Diapausa , Animales , Diapausa/fisiología , Implantación del Embrión/genética , Transducción de Señal , Metabolismo Energético
2.
Gastroenterology ; 165(5): 1136-1150, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37541526

RESUMEN

BACKGROUND & AIMS: Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS: We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS: SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS: Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.


Asunto(s)
Adenoma , Ceramidas , Humanos , Animales , Ratones , Ceramidas/metabolismo , Ácidos Grasos , Esfingolípidos/metabolismo , Serina C-Palmitoiltransferasa/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 318(3): R503-R511, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31994900

RESUMEN

Toll-like receptor 4 (TLR4) is a proposed mediator of ceramide accumulation, muscle atrophy, and insulin resistance in skeletal muscle. It is currently unknown whether pharmacological inhibition of TLR4, using the TLR4-specific inhibitor TAK-242 during muscle disuse, is able to prevent changes in intracellular ceramide species and consequently preserve muscle size and insulin sensitivity in physically active mice. To address this question, we subjected running wheel-conditioned C57BL/6 male mice (13 wk old; ∼10/group) to 7 days of hindlimb suspension (HS), 7 days of continued wheel running (WR), or daily injections of TAK-242 during HS (HS + TAK242) for 7 days. We measured hindlimb muscle morphology, intramuscular and liver ceramide content, HOMA-IR, mRNA proxies of ceramide turnover and lipid trafficking, and muscle fatty acid and glycerolipid content. As a result, soleus and liver ceramide abundance was greater (P < 0.05) in HS vs. WR but was reduced with TLR4 inhibition (HS + TAK-242 vs. HS). Muscle mass declined (P < 0.01) with HS (vs. WR), but TLR4 inhibition did not prevent this loss (soleus: P = 0.08; HS vs. HS + TAK-242). HOMA-IR was impaired (P < 0.01) in HS versus WR mice, but only fasting blood glucose was reduced with TLR4 inhibition (HS + TAK-242 vs HS, P < 0.05). Robust decreases in muscle Spt2 and Cd36 mRNA and muscle lipidomic trafficking may partially explain reductions in ceramides with TLR4 inhibition. In conclusion, pharmacological TLR4 inhibition in wheel-conditioned mice prevented ceramide accumulation during the early phase of hindlimb suspension (7 days) but had little effect on muscle size and insulin sensitivity.


Asunto(s)
Actividad Motora/fisiología , Músculo Esquelético/patología , Atrofia Muscular/patología , Receptor Toll-Like 4/genética , Animales , Ceramidas/metabolismo , Suspensión Trasera/fisiología , Resistencia a la Insulina , Hígado/metabolismo , Ratones Endogámicos C57BL , Receptor Toll-Like 4/metabolismo
5.
Biochem J ; 475(3): 561-569, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29170160

RESUMEN

The purpose of the present study was to determine the effects of prolonged hyperinsulinemia on mitochondrial respiration and uncoupling in distinct adipose tissue depots. Sixteen-week-old male mice were injected daily with placebo or insulin to induce an artificial hyperinsulinemia for 28 days. Following the treatment period, mitochondrial respiration and degree of uncoupling were determined in permeabilized perirenal, inguinal, and interscapular adipose tissue. White adipose tissue (WAT) mitochondria (inguinal and perirenal) respire at substantially lower rates compared with brown adipose tissue (BAT). Insulin treatment resulted in a significant reduction in mitochondrial respiration in inguinal WAT (iWAT) and interscapular BAT (iBAT), but not in perirenal WAT (pWAT). Furthermore, these changes were accompanied by an insulin-induced reduction in UCP-1 (uncoupling protein 1) and PGC-1α in iWAT and iBAT only, but not in pWAT or skeletal muscle. Compared with adipose tissue mitochondria in placebo conditions, adipose tissue from hyperinsulinemic mice manifested a site-specific reduction in mitochondrial respiration probably as a result of reduced uncoupling. These results may help explain weight gain so commonly seen with insulin treatment in type 2 diabetes mellitus.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/farmacología , Mitocondrias/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Insulina/metabolismo , Ratones , Mitocondrias/patología , Proteínas Desacopladoras Mitocondriales/genética , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Respiración/efectos de los fármacos , Proteína Desacopladora 1/genética
6.
Int J Mol Sci ; 18(5)2017 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-28531105

RESUMEN

We have previously found that cigarette smoke disrupts metabolic function, in part, by increasing muscle ceramide accrual. To further our understanding of this, we sought to determine the role of the cytokine high-mobility group box 1 (HMGB1), which is increased with smoke exposure, in smoke-induced muscle metabolic perturbations. To test this theory, we determined HMGB1 from lungs of human smokers, as well as from lung cells from mice exposed to cigarette smoke. We also treated cells and mice directly with HMGB1, in the presence or absence of myriocin, an inhibitor of serine palmitoyltransferase, the rate-limiting enzyme in ceramide biosynthesis. Outcomes included assessments of insulin resistance and muscle mitochondrial function. HMGB1 was significantly increased in both human lungs and rodent alveolar macrophages. Further testing revealed that HMGB1 treatment elicited a widespread increase in ceramide species and reduction in myotube mitochondrial respiration, an increase in reactive oxygen species, and reduced insulin-stimulated Akt phosphorylation. Inhibition of ceramide biosynthesis with myriocin was protective. In mice, by comparing treatments of HMGB1 injections with or without myriocin, we found that HMGB1 injections resulted in increased muscle ceramides, especially C16 and C24, which were necessary for reduced muscle mitochondrial respiration and compromised insulin and glucose tolerance. In conclusion, HMGB1 may be a necessary intermediate in the ceramide-dependent metabolic consequences of cigarette smoke exposure.


Asunto(s)
Ceramidas/biosíntesis , Proteína HMGB1/metabolismo , Pulmón/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Nicotiana/efectos adversos , Humo/efectos adversos , Fumar/metabolismo , Animales , Respiración de la Célula , Ceramidas/antagonistas & inhibidores , Ceramidas/genética , Ácidos Grasos Monoinsaturados/farmacología , Proteína HMGB1/sangre , Proteína HMGB1/farmacología , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Pulmón/patología , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Mitocondrias/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina C-Palmitoiltransferasa/metabolismo
7.
Cardiovasc Diabetol ; 14: 153, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26682540

RESUMEN

BACKGROUND: States of hyperinsulinemia, particularly insulin resistance and type 2 diabetes mellitus, are becoming remarkably common, with roughly half a billion people likely to suffer from the disorder within the next 15 years. Along with this rise has been an associated increased burden of cardiovascular disease. Considering type 2 diabetics treated with insulin are more likely to suffer from heart complications, we sought to determine the specific effect of insulin on ceramide-dependent cardiometabolic risk factors, including insulin resistance and altered heart mitochondrial physiology. METHODS: H9c2 cardiomyocytes and adult mice were treated with insulin with or without myriocin to inhibit ceramide biosynthesis. Insulin and glucose changes were tracked throughout the study and mitochondrial bioenergetics was determined in permeabilized cardiomyocytes and myocardium. RESULTS: Herein, we demonstrate that insulin is sufficient to disrupt heart mitochondrial respiration in both isolated cardiomyocytes and whole myocardium, possibly by increasing mitochondrial fission. Further, insulin increases ceramide accrual in a time-dependent manner, which is necessary for insulin-induced alterations in heart mitochondrial respiration and insulin resistance. CONCLUSIONS: Collectively, these observations have two implications. First, they indicate a pathological role of insulin in heart complications stemming from mitochondrial disruption. Second, they identify ceramide as a possible mediator of insulin-related heart disorders.


Asunto(s)
Ceramidas/metabolismo , Metabolismo Energético/efectos de los fármacos , Hipoglucemiantes/toxicidad , Insulina/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Animales , Línea Celular , Respiración de la Célula/efectos de los fármacos , Ácidos Grasos Monoinsaturados/farmacología , Hiperinsulinismo/inducido químicamente , Hiperinsulinismo/metabolismo , Resistencia a la Insulina , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Factores de Tiempo , Aumento de Peso/efectos de los fármacos
8.
Am J Physiol Endocrinol Metab ; 307(10): E919-27, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25269485

RESUMEN

Cigarette smoke exposure increases lung ceramide biosynthesis and alters metabolic function. We hypothesized that ceramides are released from the lung during cigarette smoke exposure and result in elevated skeletal muscle ceramide levels, resulting in insulin resistance and altered mitochondrial respiration. Employing cell and animal models, we explored the effect of cigarette smoke on muscle cell insulin signaling and mitochondrial respiration. Muscle cells were treated with conditioned medium from cigarette smoke extract (CSE)-exposed lung cells, followed by analysis of ceramides and assessment of insulin signaling and mitochondrial function. Mice were exposed to daily cigarette smoke and a high-fat, high-sugar (HFHS) diet with myriocin injections to inhibit ceramide synthesis. Comparisons were conducted between these mice and control animals on standard diets in the absence of smoke exposure and myriocin injections. Muscle cells treated with CSE-exposed conditioned medium were completely unresponsive to insulin stimulation, and mitochondrial respiration was severely blunted. These effects were mitigated when lung cells were treated with the ceramide inhibitor myriocin prior to and during CSE exposure. In mice, daily cigarette smoke exposure and HFHS diet resulted in insulin resistance, which correlated with elevated ceramides. Although myriocin injection was protective against insulin resistance with either smoke or HFHS, it was insufficient to prevent insulin resistance with combined CS and HFHS. However, myriocin injection restored muscle mitochondrial respiration in all treatments. Ceramide inhibition prevents metabolic disruption in muscle cells with smoke exposure and may explain whole body insulin resistance and mitochondrial dysfunction in vivo.


Asunto(s)
Ceramidas/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Pulmón/metabolismo , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Nicotiana/toxicidad , Humo/efectos adversos , Animales , Carbohidratos , Respiración de la Célula , Dieta Alta en Grasa , Ácidos Grasos Monoinsaturados/farmacología , Ratones , Transducción de Señal
9.
BMC Cardiovasc Disord ; 14: 165, 2014 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-25416336

RESUMEN

BACKGROUND: Cigarette smoking is a common and lethal worldwide habit, with considerable mortality stemming from its deleterious effects on heart function. While current theories posit altered blood lipids and fibrinogen metabolism as likely mediators, none have explored the role of the sphingolipid ceramide in exacerbating heart function with smoke exposure. Ceramide production is a consequence of cigarette smoke in the lung, and considering ceramide's harmful effects on mitochondrial function, we sought to elucidate the role of ceramide in mediating smoke-induced altered heart mitochondrial respiration. METHODS: Lung cells (A549) were exposed to cigarette smoke extract (CSE) and heart cells (H9C2) were exposed to the lung-cell conditioned medium. Adult male mice were exposed sidestream cigarette smoke for 8 wk with dietary intervention and ceramide inhibition. Ceramides and heart cell or myocardial mitochondrial respiration were determined. RESULTS: Lung cell cultures revealed a robust response to cigarette smoke extract in both production and secretion of ceramides. Heart cells incubated with lung-cell conditioned medium revealed a pronounced inhibition of myocardial mitochondrial respiration, though this effect was mitigated with ceramide inhibition via myriocin. In vivo, heart ceramides increased roughly 600% in adult mice with long-term sidestream cigarette smoke exposure. This resulted in a significant ceramide-dependent reduction in left myocardial mitochondrial respiration, as heart mitochondria from the mice exposed to both smoke and myriocin injections respired normally. CONCLUSIONS: These results suggest ceramide to be an important mediator of altered myocardial mitochondrial function with cigarette smoke exposure. Thus, anti-ceramide therapies might be considered in the future to protect heart mitochondrial function with smoke exposure.


Asunto(s)
Ceramidas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Humo/efectos adversos , Fumar/efectos adversos , Animales , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Ceramidas/antagonistas & inhibidores , Medios de Cultivo Condicionados/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Humanos , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Regulación hacia Arriba
10.
Biochem J ; 456(3): 427-39, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24073738

RESUMEN

Ceramide is a sphingolipid that serves as an important second messenger in an increasing number of stress-induced pathways. Ceramide has long been known to affect the mitochondria, altering both morphology and physiology. We sought to assess the impact of ceramide on skeletal muscle mitochondrial structure and function. A primary observation was the rapid and dramatic division of mitochondria in ceramide-treated cells. This effect is likely to be a result of increased Drp1 (dynamin-related protein 1) action, as ceramide increased Drp1 expression and Drp1 inhibition prevented ceramide-induced mitochondrial fission. Further, we found that ceramide treatment reduced mitochondrial O2 consumption (i.e. respiration) in cultured myotubes and permeabilized red gastrocnemius muscle fibre bundles. Ceramide treatment also increased H2O2 levels and reduced Akt/PKB (protein kinase B) phosphorylation in myotubes. However, inhibition of mitochondrial fission via Drp1 knockdown completely protected the myotubes and fibre bundles from ceramide-induced metabolic disruption, including maintained mitochondrial respiration, reduced H2O2 levels and unaffected insulin signalling. These data suggest that the forced and sustained mitochondrial fission that results from ceramide accrual may alter metabolic function in skeletal muscle, which is a prominent site not only of energy demand (via the mitochondria), but also of ceramide accrual with weight gain.


Asunto(s)
Ceramidas/toxicidad , Peróxido de Hidrógeno/metabolismo , Mitocondrias Musculares/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Animales , Línea Celular , Dinaminas/metabolismo , Insulina/metabolismo , Masculino , Ratones , Mitocondrias Musculares/patología , Fibras Musculares Esqueléticas/patología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Mol Genet Metab Rep ; 39: 101077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38595987

RESUMEN

Farber Disease is a debilitating and lethal childhood disease of ceramide accumulation caused by acid ceramidase deficiency. The potent induction of a ligand-gated neutral ceramidase activity promoted by adiponectin may provide sufficient lowering of ceramides to allow for the treatment of Farber Disease. In vitro, adiponectin or adiponectin receptor agonist treatments lowered total ceramide concentrations in human fibroblasts from a patient with Farber Disease. However, adiponectin overexpression in a Farber Disease mouse model did not improve lifespan or immune infiltration. Intriguingly, mice heterozygous for the Farber Disease mutation were more prone to glucose intolerance and insulin resistance when fed a high-fat diet, and adiponectin overexpression protected from these metabolic perturbations. These studies suggest that adiponectin evokes a ceramidase activity that is not reliant on the functional expression of acid ceramidase, but indicates that additional strategies are required to ameliorate outcomes of Farber Disease.

13.
Sci Rep ; 13(1): 17322, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833312

RESUMEN

Intermittent fasting (IF) is associated with enormous metabolic alterations that underpin its diverse health effects. Changes in lipid metabolism, particularly ceramides, and other sphingolipids, are among the most notable of these alterations. This study investigated the lipidomic alterations associated with 29-30 days of Ramadan diurnal intermittent fasting (RIF) in metabolically healthy overweight and obese subjects. A prospective cohort of 57 overweight and obese adults (70% males, 38.4 ± 11.2 years), with an age range of 18-58 years was observed prior to and at the conclusion of Ramadan. At both time points, anthropometric, biochemical (lipid profile, glycemic, and inflammatory markers), and dietary intake measurements were taken. Using liquid chromatography-mass spectrometry, a lipidomic analysis of ceramides and other sphingolipids was conducted. Using paired sample t-tests, pre- and post-Ramadan anthropometric, biochemical, and dietary values were compared. RIF was associated with improved levels of lipid profile compartments and inflammatory markers. In addition, RIF was associated with a decrease in plasma sphingosine and sphinganine, which was accompanied by a decrease in sphingosine 1-phosphate and sphinganine 1-phosphate. In addition, RIF was associated with decreased C17, C22, and C24 sphingomyelin, but not C14, C16, C18, C20, and C24:1 sphingomyelin, as well as C20, C22, C24, and C24:1 dihydrosphingomyelin, but not C16 and C18 dihydrosphingomyelin. This study demonstrates that RIF is associated with improvements in plasma sphingosine, sphinganine sphingomyelin, and dihydrosphingomyelin lipid species, as well as improved lipid profile and inflammatory markers, which may confer short-term protection against cardiometabolic problems in patients with overweight/obesity.


Asunto(s)
Ceramidas , Esfingolípidos , Masculino , Adulto , Humanos , Adolescente , Adulto Joven , Persona de Mediana Edad , Femenino , Esfingomielinas , Esfingosina , Sobrepeso , Lipidómica , Ayuno Intermitente , Estudios Prospectivos , Obesidad , Ayuno
14.
Nat Commun ; 13(1): 5293, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075933

RESUMEN

P2-type ATPase sodium-potassium pumps (Na+/K+-ATPases) are ion-transporting enzymes that use ATP to transport Na+ and K+ on opposite sides of the lipid bilayer against their electrochemical gradients to maintain ion concentration gradients across the membranes in all animal cells. Despite the available molecular architecture of the Na+/K+-ATPases, a complete molecular mechanism by which the Na+ and K+ ions access into and are released from the pump remains unknown. Here we report five cryo-electron microscopy (cryo-EM) structures of the human alpha3 Na+/K+-ATPase in its cytoplasmic side-open (E1), ATP-bound cytoplasmic side-open (E1•ATP), ADP-AlF4- trapped Na+-occluded (E1•P-ADP), BeF3- trapped exoplasmic side-open (E2P) and MgF42- trapped K+-occluded (E2•Pi) states. Our work reveals the atomically resolved structural detail of the cytoplasmic gating mechanism of the Na+/K+-ATPase.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Sodio , Adenosina Difosfato , Adenosina Trifosfato , Animales , Microscopía por Crioelectrón , Humanos , Iones , Potasio/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
15.
Diabetes ; 71(6): 1218-1232, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35287172

RESUMEN

Fatty acid (FA) signaling contributes to ß-cell mass expansion in response to nutrient excess, but the underlying mechanisms are poorly understood. In the presence of elevated glucose, FA metabolism is shifted toward synthesis of complex lipids, including sphingolipids. Here, we tested the hypothesis that sphingolipids are involved in the ß-cell proliferative response to FA. Isolated rat islets were exposed to FA and 16.7 mmol/L glucose for 48-72 h, and the contribution of the de novo sphingolipid synthesis pathway was tested using the serine palmitoyltransferase inhibitor myriocin, the sphingosine kinase (SphK) inhibitor SKI II, or knockdown of SphK, fatty acid elongase 1 (ELOVL1) and acyl-CoA-binding protein (ACBP). Rats were infused with glucose and the lipid emulsion ClinOleic and received SKI II by gavage. ß-Cell proliferation was assessed by immunochemistry or flow cytometry. Sphingolipids were analyzed by liquid chromatography-tandem mass spectrometry. Among the FAs tested, only oleate increased ß-cell proliferation. Myriocin, SKI II, and SphK knockdown all decreased oleate-induced ß-cell proliferation. Oleate exposure did not increase the total amount of sphingolipids but led to a specific rise in 24:1 species. Knockdown of ACBP or ELOVL1 inhibited oleate-induced ß-cell proliferation. We conclude that unsaturated very-long-chain sphingolipids produced from the available C24:1 acyl-CoA pool mediate oleate-induced ß-cell proliferation in rats.


Asunto(s)
Ácido Oléico , Esfingolípidos , Animales , Proliferación Celular , Ácidos Grasos/metabolismo , Glucosa , Ratas , Esfingolípidos/química
16.
Trends Pharmacol Sci ; 42(12): 1082-1095, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34750017

RESUMEN

Ectopic lipids play a key role in numerous pathologies, including heart disease, stroke, and diabetes. Of all the lipids studied, perhaps the most well understood is cholesterol, a widely used clinical biomarker of cardiovascular disease and a target of pharmacological interventions (e.g., statins). Thousands of studies have interrogated the regulation and action of this disease-causing sterol. As a growing body of literature indicates, a new class of lipid-based therapies may be on the horizon. Ceramides are cholesterol-independent biomarkers of heart disease and diabetes in humans. Studies in rodents suggest that they are causative agents of disease, as lowering ceramides through genetic or pharmacological interventions prevents cardiovascular disease and diabetes. Herein, we discuss the evidence supporting the potential of therapeutics targeting ceramides to treat cardiometabolic disease, contrasting it with the robust datasets that drove the creation of cholesterol-lowering pharmaceuticals.


Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , Biomarcadores , Enfermedades Cardiovasculares/tratamiento farmacológico , Ceramidas , Colesterol , Humanos
17.
Elife ; 92020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795388

RESUMEN

Brown adipose tissue (BAT) is composed of thermogenic cells that convert chemical energy into heat to maintain a constant body temperature and counteract metabolic disease. The metabolic adaptations required for thermogenesis are not fully understood. Here, we explore how steady state levels of metabolic intermediates are altered in brown adipose tissue in response to cold exposure. Transcriptome and metabolome analysis revealed changes in pathways involved in amino acid, glucose, and TCA cycle metabolism. Using isotopic labeling experiments, we found that activated brown adipocytes increased labeling of pyruvate and TCA cycle intermediates from U13C-glucose. Although glucose oxidation has been implicated as being essential for thermogenesis, its requirement for efficient thermogenesis has not been directly tested. We show that mitochondrial pyruvate uptake is essential for optimal thermogenesis, as conditional deletion of Mpc1 in brown adipocytes leads to impaired cold adaptation. Isotopic labeling experiments using U13C-glucose showed that loss of MPC1 led to impaired labeling of TCA cycle intermediates. Loss of MPC1 in BAT increased 3-hydroxybutyrate levels in blood and BAT in response to the cold, suggesting that ketogenesis provides an alternative fuel source to compensate. Collectively, these studies highlight that complete glucose oxidation is essential for optimal brown fat thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Proteínas de Transporte de Anión/genética , Frío , Glucosa/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/genética , Termogénesis , Adipocitos Marrones/metabolismo , Animales , Proteínas de Transporte de Anión/metabolismo , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oxidación-Reducción , Suero/química
18.
Physiol Rep ; 7(18): e14238, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31552709

RESUMEN

The FOXN3 gene locus is associated with fasting blood glucose levels in non-diabetic human population genetic studies. The blood glucose-modifying variation within this gene regulates the abundance of both FOXN3 protein and transcript in primary human hepatocytes, with the hyperglycemia risk allele causing increases in both FOXN3 protein and transcript. Using transgenic and knock-out zebrafish models, we showed previously that FOXN3 is a transcriptional repressor that regulates fasting blood glucose by altering liver gene expression of MYC, a  master transcriptional regulator of glucose utilization, and by modulating pancreatic α cell mass and function through an unknown mechanism. Since homozygous Foxn3 null mice die perinatally, and heterozygous carries of the null allele are smaller than wild-type siblings, we examine the metabolic effects of decreasing mouse liver Foxn3 expression in adult life, performing dynamic endocrine tests not feasible in adult zebrafish. Fasting glucose, glucagon, and insulin; and dynamic responses to glucose, insulin, pyruvate, glutamine, and glucagon were measured. Gluconeogenic and amino acid catabolic gene expression was examined in livers, as well. Knocking down liver Foxn3 expression via transduction with adeno-associated virus serotype 8 particles encoding a short hairpin RNA targeting Fonx3 decreases fasting glucose and increases Myc expression, without altering fasting glucagon or fasting insulin. Liver Foxn3 knock-down confers increases glucose tolerance, has no effect on insulin tolerance or response to glucagon challenge, blunts pyruvate and glutamine tolerance, and modulates expression of amino acid transporters and catabolic enzymes. We conclude that liver Foxn3 regulates substrate selection for gluconeogenesis.


Asunto(s)
Glucemia/metabolismo , Proteínas de Ciclo Celular/fisiología , Factores de Transcripción Forkhead/fisiología , Gluconeogénesis/fisiología , Hígado/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Ayuno/sangre , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes myc , Glucagón/sangre , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Masculino , Ratones Endogámicos C57BL , ARN Mensajero/genética
19.
Nat Metab ; 1(9): 876-885, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-32405618

RESUMEN

The biophysical environment of membrane phospholipids affects structure, function, and stability of membrane-bound proteins.1,2 Obesity can disrupt membrane lipids, and in particular, alter the activity of sarco/endoplasmic reticulum (ER/SR) Ca2+-ATPase (SERCA) to affect cellular metabolism.3-5 Recent evidence suggests that transport efficiency (Ca2+ uptake / ATP hydrolysis) of skeletal muscle SERCA can be uncoupled to increase energy expenditure and protect mice from diet-induced obesity.6,7 In isolated SR vesicles, membrane phospholipid composition is known to modulate SERCA efficiency.8-11 Here we show that skeletal muscle SR phospholipids can be altered to decrease SERCA efficiency and increase whole-body metabolic rate. The absence of skeletal muscle phosphatidylethanolamine (PE) methyltransferase (PEMT) promotes an increase in skeletal muscle and whole-body metabolic rate to protect mice from diet-induced obesity. The elevation in metabolic rate is caused by a decrease in SERCA Ca2+-transport efficiency, whereas mitochondrial uncoupling is unaffected. Our findings support the hypothesis that skeletal muscle energy efficiency can be reduced to promote protection from obesity.


Asunto(s)
Calcio/metabolismo , Metabolismo Energético , Músculo Esquelético/metabolismo , Fosfolípidos/metabolismo , Animales , Dieta Alta en Grasa , Transporte Iónico , Metilación , Ratones , Ratones Noqueados , Músculo Esquelético/enzimología , Obesidad/enzimología , Obesidad/genética , Fosfatidiletanolamina N-Metiltransferasa/genética , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
20.
Science ; 365(6451): 386-392, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31273070

RESUMEN

Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders.


Asunto(s)
Ceramidas/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Resistencia a la Insulina/genética , Proteínas de la Membrana/genética , Oxidorreductasas/genética , Animales , Ceramidas/química , Ceramidas/genética , Dieta Alta en Grasa/efectos adversos , Eliminación de Gen , Leptina/deficiencia , Ratones , Ratones Mutantes , Esfingolípidos/química , Esfingolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA