Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Glia ; 69(12): 2812-2827, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34396578

RESUMEN

Glutamine synthetase (GS) is a key enzyme that metabolizes glutamate into glutamine. While GS is highly enriched in astrocytes, expression in other glial lineages has been noted. Using a combination of reporter mice and cell type-specific markers, we show that GS is expressed in myelinating oligodendrocytes (OL) but not oligodendrocyte progenitor cells of the mouse and human ventral spinal cord. To investigate the role of GS in mature OL, we used a conditional knockout (cKO) approach to selectively delete GS-encoding gene (Glul) in OL, which caused a significant decrease in glutamine levels on mouse spinal cord extracts. GS cKO mice (CNP-cre+ :Glulfl/fl ) showed no differences in motor neuron numbers, size or axon density; OL differentiation and myelination in the ventral spinal cord was normal up to 6 months of age. Interestingly, GS cKO mice showed a transient and specific decrease in peak force while locomotion and motor coordination remained unaffected. Last, GS expression in OL was increased in chronic pathological conditions in both mouse and humans. We found a disease-stage dependent increase of OL expressing GS in the ventral spinal cord of SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Moreover, we showed that GLUL transcripts levels were increased in OL in leukocortical tissue from multiple sclerosis but not control patients. These findings provide evidence towards OL-encoded GS function in spinal cord sensorimotor axis, which is dysregulated in chronic neurological diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Glutamato-Amoníaco Ligasa , Oligodendroglía , Médula Espinal , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Oligodendroglía/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
2.
NMR Biomed ; 32(11): e4164, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31437326

RESUMEN

Lipopolysaccharide (LPS) is a commonly used agent for induction of neuroinflammation in preclinical studies. Upon injection, LPS causes activation of microglia and astrocytes, whose metabolism alters to favor glycolysis. Assessing in vivo neuroinflammation and its modulation following therapy remains challenging, and new noninvasive methods allowing for longitudinal monitoring would be highly valuable. Hyperpolarized (HP) 13 C magnetic resonance spectroscopy (MRS) is a promising technique for assessing in vivo metabolism. In addition to applications in oncology, the most commonly used probe of [1-13 C] pyruvate has shown potential in assessing neuroinflammation-linked metabolism in mouse models of multiple sclerosis and traumatic brain injury. Here, we aimed to investigate LPS-induced neuroinflammatory changes using HP [1-13 C] pyruvate and HP 13 C urea. 2D chemical shift imaging following simultaneous intravenous injection of HP [1-13 C] pyruvate and HP 13 C urea was performed at baseline (day 0) and at days 3 and 7 post-intracranial injection of LPS (n = 6) or saline (n = 5). Immunofluorescence (IF) analyses were performed for Iba1 (resting and activated microglia/macrophages), GFAP (resting and reactive astrocytes) and CD68 (activated microglia/macrophages). A significant increase in HP [1-13 C] lactate production was observed at days 3 and 7 following injection, in the injected (ipsilateral) side of the LPS-treated mouse brain, but not in either the contralateral side or saline-injected animals. HP 13 C lactate/pyruvate ratio, without and with normalization to urea, was also significantly increased in the ipsilateral LPS-injected brain at 7 days compared with baseline. IF analyses showed a significant increase in CD68 and GFAP staining at 3 days, followed by increased numbers of Iba1 and GFAP positive cells at 7 days post-LPS injection. In conclusion, we can detect LPS-induced changes in the mouse brain using HP 13 C MRS, in alignment with increased numbers of microglia/macrophages and astrocytes. This study demonstrates that HP 13 C spectroscopy has substantial potential for providing noninvasive information on neuroinflammation.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Inflamación/diagnóstico por imagen , Inflamación/diagnóstico , Neurotoxinas/toxicidad , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Inflamación/patología , Ácido Láctico/metabolismo , Lipopolisacáridos/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Ácido Pirúvico/metabolismo
3.
Int J Mol Sci ; 19(12)2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30486287

RESUMEN

Traumatic brain injury (TBI) is of particular concern for the aging community since there is both increased incidence of TBI and decreased functional recovery in this population. In addition, TBI is the strongest environmental risk factor for development of Alzheimer's disease and other dementia-related neurodegenerative disorders. Critical changes that affect cognition take place over time following the initial insult. Our previous work identified immune system activation as a key contributor to cognitive deficits observed in aged animals. Using a focal contusion model in the current study, we demonstrate a brain lesion and cavitation formation, as well as prolonged blood⁻brain barrier breakdown. These changes were associated with a prolonged inflammatory response, characterized by increased microglial cell number and phagocytic activity 30 days post injury, corresponding to significant memory deficits. We next aimed to identify the injury-induced cellular and molecular changes that lead to chronic cognitive deficits in aged animals, and measured increases in complement initiation components C1q, C3, and CR3, which are known to regulate microglial⁻synapse interactions. Specifically, we found significant accumulation of C1q on synapses within the hippocampus, which was paralleled by synapse loss 30 days post injury. We used genetic and pharmacological approaches to determine the mechanistic role of complement initiation on cognitive loss in aging animals after TBI. Notably, both genetic and pharmacological blockade of the complement pathway prevented memory deficits in aged injured animals. Thus, therapeutically targeting early components of the complement cascade represents a significant avenue for possible clinical intervention following TBI in the aging population.


Asunto(s)
Envejecimiento/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Proteínas del Sistema Complemento/metabolismo , Trastornos de la Memoria/etiología , Microglía/patología , Sinapsis/patología , Animales , Barrera Hematoencefálica/patología , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/patología , Recuento de Células , Enfermedad Crónica , Contusiones , Progresión de la Enfermedad , Femenino , Imagen por Resonancia Magnética , Masculino , Trastornos de la Memoria/patología , Ratones Endogámicos C57BL , Microglía/metabolismo , Modelos Biológicos , Fagocitosis , Sinapsis/metabolismo
4.
Anal Biochem ; 529: 216-228, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27515993

RESUMEN

In vivo carbon-13 (13C) MRS opens unique insights into the metabolism of intact organisms, and has led to major advancements in the understanding of cellular metabolism under normal and pathological conditions in various organs such as skeletal muscles, the heart, the liver and the brain. However, the technique comes at the expense of significant experimental difficulties. In this review we focus on the experimental aspects of non-hyperpolarized 13C MRS in vivo. Some of the enrichment strategies which have been proposed so far are described; the various MRS acquisition paradigms to measure 13C labeling are then presented. Finally, practical aspects of 13C spectral quantification are discussed.


Asunto(s)
Isótopos de Carbono/análisis , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Animales , Isótopos de Carbono/metabolismo , Humanos , Modelos Biológicos
5.
Hum Brain Mapp ; 36(11): 4622-37, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26287448

RESUMEN

Research in humans and animals has shown that negative childhood experiences (NCE) can have long-term effects on the structure and function of the brain. Alterations have been noted in grey and white matter, in the brain's resting state, on the glutamatergic system, and on neural and behavioural responses to aversive stimuli. These effects can be linked to psychiatric disorder such as depression and anxiety disorders that are influenced by excessive exposure to early life stressors. The aim of the current study was to investigate the effect of NCEs on these systems. Resting state functional MRI (rsfMRI), aversion task fMRI, glutamate magnetic resonance spectroscopy (MRS), and diffusion magnetic resonance imaging (dMRI) were combined with the Childhood Trauma Questionnaire (CTQ) in healthy subjects to examine the impact of NCEs on the brain. Low CTQ scores, a measure of NCEs, were related to higher resting state glutamate levels and higher resting state entropy in the medial prefrontal cortex (mPFC). CTQ scores, mPFC glutamate and entropy, correlated with neural BOLD responses to the anticipation of aversive stimuli in regions throughout the aversion-related network, with strong correlations between all measures in the motor cortex and left insula. Structural connectivity strength, measured using mean fractional anisotropy, between the mPFC and left insula correlated to aversion-related signal changes in the motor cortex. These findings highlight the impact of NCEs on multiple inter-related brain systems. In particular, they highlight the role of a prefrontal-insular-motor cortical network in the processing and responsivity to aversive stimuli and its potential adaptability by NCEs.


Asunto(s)
Adultos Sobrevivientes de Eventos Adversos Infantiles , Mapeo Encefálico/métodos , Corteza Cerebral/fisiopatología , Imagen por Resonancia Magnética/métodos , Trauma Psicológico/fisiopatología , Adulto , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Corteza Motora/fisiopatología , Imagen Multimodal , Corteza Prefrontal/fisiopatología , Adulto Joven
6.
J Magn Reson Imaging ; 41(2): 454-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24436309

RESUMEN

PURPOSE: To validate semiautomated spinal cord segmentation in healthy subjects and patients with neurodegenerative diseases and trauma. MATERIALS AND METHODS: Forty-nine healthy subjects, as well as 29 patients with amyotrophic lateral sclerosis, 19 with spinal muscular atrophy, and 14 with spinal cord injuries were studied. Cord area was measured from T2 -weighted 3D turbo spin echo images (cord levels from C2 to T9) using the semiautomated segmentation method of Losseff et al (Brain [1996] 119(Pt 3):701-708), compared with manual segmentation. Reproducibility was evaluated using the inter- and intraobserver coefficient of variation (CoV). Accuracy was assessed using the Dice similarity coefficient (DSC). Robustness to initialization was assessed by simulating modifications to the contours drawn manually prior to segmentation. RESULTS: Mean interobserver CoV was 4.00% for manual segmentation (1.90% for Losseff's method) in the cervical region and 5.62% (respectively 2.19%) in the thoracic region. Mean intraobserver CoV was 2.34% for manual segmentation (1.08% for Losseff's method) in the cervical region and 2.35% (respectively 1.34%) in the thoracic region. DSC was high (0.96) in both cervical and thoracic regions. DSC remained higher than 0.8 even when modifying initial contours by 50%. CONCLUSION: The semiautomated segmentation method showed high reproducibility and accuracy in measuring spinal cord area.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Atrofia Muscular/patología , Traumatismos de la Médula Espinal/diagnóstico , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Relación Señal-Ruido
7.
Neurochem Res ; 40(12): 2482-92, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26553273

RESUMEN

Most current brain metabolic models are not capable of taking into account the dynamic isotopomer information available from fine structure multiplets in (13)C spectra, due to the difficulty of implementing such models. Here we present a new approach that allows automatic implementation of multi-compartment metabolic models capable of fitting any number of (13)C isotopomer curves in the brain. The new automated approach also makes it possible to quickly modify and test new models to best describe the experimental data. We demonstrate the power of the new approach by testing the effect of adding separate pyruvate pools in astrocytes and neurons, and adding a vesicular neuronal glutamate pool. Including both changes reduced the global fit residual by half and pointed to dilution of label prior to entry into the astrocytic TCA cycle as the main source of glutamine dilution. The glutamate-glutamine cycle rate was particularly sensitive to changes in the model.


Asunto(s)
Química Encefálica/fisiología , Espectroscopía de Resonancia Magnética/métodos , Algoritmos , Animales , Automatización , Simulación por Computador , Humanos , Modelos Biológicos , Modelos Teóricos , Neuroglía/metabolismo , Neuronas/metabolismo
8.
Neuroimage ; 86: 10-8, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23618604

RESUMEN

The insula has been identified as a key region involved in interoceptive awareness. Whilst imaging studies have investigated the neural activation patterns in this region involved in intero- and exteroceptive awareness, the underlying biochemical mechanisms still remain unclear. In order to investigate these, a well-established fMRI task targeting interoceptive awareness (heartbeat counting) and exteroceptive awareness (tone counting) was combined with magnetic resonance spectroscopy (MRS). Controlling for physiological noise, neural activity in the insula during intero- and exteroceptive awareness was confirmed in an independent data sample using the same fMRI design. Focussing on MRS values from the left insula and combining them with neural activity during intero- and exteroceptive awareness in the same healthy individuals, we demonstrated that GABA concentration in a region highly involved in interoceptive processing is correlated with neural responses to interoceptive stimuli, as opposed to exteroceptive stimuli. In addition, both GABA and interoceptive signal changes in the insula predicted the degree of depressed affect, as measured by the Beck Hopelessness Scale. On the one hand, the association between GABA concentration and neural activity during interoceptive awareness provides novel insight into the biochemical underpinnings of insula function and interoception. On the other, through the additional association of both GABA and neural activity during interoception with depressed affect, these data also bear potentially important implications for psychiatric disorders like depression and anxiety, where GABAergic deficits, altered insula function and abnormal affect coincide.


Asunto(s)
Concienciación/fisiología , Corteza Cerebral/metabolismo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Sensación/fisiología , Ácido gamma-Aminobutírico/metabolismo , Adolescente , Adulto , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Neurotransmisores/metabolismo , Valores de Referencia , Distribución Tisular , Adulto Joven
9.
Res Sq ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37645937

RESUMEN

Career athletes, active military, and head trauma victims are at increased risk for mild repetitive traumatic brain injury (rTBI), a condition that contributes to the development of epilepsy and neurodegenerative diseases. Standard clinical imaging fails to identify rTBI-induced lesions, and novel non-invasive methods are needed. Here, we evaluated if hyperpolarized 13C magnetic resonance spectroscopic imaging (HP 13C MRSI) could detect long-lasting changes in brain metabolism 3.5 months post-injury in a rTBI mouse model. Our results show that this metabolic imaging approach can detect changes in cortical metabolism at that timepoint, whereas multimodal MR imaging did not detect any structural or contrast alterations. Using Machine Learning, we further show that HP 13C MRSI parameters can help classify rTBI vs. Sham and predict long-term rTBI-induced behavioral outcomes. Altogether, our study demonstrates the potential of metabolic imaging to improve detection, classification and outcome prediction of previously undetected rTBI.

10.
Cell Rep ; 42(4): 112335, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37027294

RESUMEN

Neurons require large amounts of energy, but whether they can perform glycolysis or require glycolysis to maintain energy remains unclear. Using metabolomics, we show that human neurons do metabolize glucose through glycolysis and can rely on glycolysis to supply tricarboxylic acid (TCA) cycle metabolites. To investigate the requirement for glycolysis, we generated mice with postnatal deletion of either the dominant neuronal glucose transporter (GLUT3cKO) or the neuronal-enriched pyruvate kinase isoform (PKM1cKO) in CA1 and other hippocampal neurons. GLUT3cKO and PKM1cKO mice show age-dependent learning and memory deficits. Hyperpolarized magnetic resonance spectroscopic (MRS) imaging shows that female PKM1cKO mice have increased pyruvate-to-lactate conversion, whereas female GLUT3cKO mice have decreased conversion, body weight, and brain volume. GLUT3KO neurons also have decreased cytosolic glucose and ATP at nerve terminals, with spatial genomics and metabolomics revealing compensatory changes in mitochondrial bioenergetics and galactose metabolism. Therefore, neurons metabolize glucose through glycolysis in vivo and require glycolysis for normal function.


Asunto(s)
Metabolismo Energético , Glucólisis , Humanos , Femenino , Ratones , Animales , Glucólisis/fisiología , Imagen por Resonancia Magnética , Neuronas/metabolismo , Glucosa/metabolismo
11.
J Nucl Med ; 63(1): 140-146, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33837066

RESUMEN

Lymphocytes and innate immune cells are key drivers of multiple sclerosis (MS) and are the main target of MS disease-modifying therapies (DMT). Ex vivo analyses of MS lesions have revealed cellular heterogeneity and variable T cell levels, which may have important implications for patient stratification and choice of DMT. Although MRI has proven valuable to monitor DMT efficacy, its lack of specificity for cellular subtypes highlights the need for complementary methods to improve lesion characterization. Here, we evaluated the potential of 2'-deoxy-2'-18F-fluoro-9-ß-d-arabinofuranosylguanine (18F-FAraG) PET imaging to noninvasively assess infiltrating T cells and to provide, in combination with MRI, a novel tool to determine lesion types. Methods: We used a novel MS mouse model that combines cuprizone and experimental autoimmune encephalomyelitis to reproducibly induce 2 brain inflammatory lesion types, differentiated by their T cell content. 18F-FAraG PET imaging, T2-weighted MRI, and T1-weighted contrast-enhanced MRI were performed before disease induction, during demyelination with high levels of innate immune cells, and after T cell infiltration. Fingolimod immunotherapy was used to evaluate the ability of PET and MRI to detect therapy response. Ex vivo immunofluorescence analyses for T cells, microglia/macrophages, myelin, and blood-brain barrier (BBB) integrity were performed to validate the in vivo findings. Results:18F-FAraG signal was significantly increased in the brain and spinal cord at the time point of T cell infiltration. 18F-FAraG signal from white matter (corpus callosum) and gray matter (cortex, hippocampus) further correlated with T cell density. T2-weighted MRI detected white matter lesions independently of T cells. T1-weighted contrast-enhanced MRI indicated BBB disruption at the time point of T cell infiltration. Fingolimod treatment prevented motor deficits and decreased T cell and microglia/macrophage levels. In agreement, 18F-FAraG signal was decreased in the brain and spinal cord of fingolimod-treated mice; T1-weighted contrast-enhanced MRI revealed intact BBB, whereas T2-weighted MRI findings remained unchanged. Conclusion: The combination of MRI and 18F-FAraG PET enables detection of inflammatory demyelination and T cell infiltration in an MS mouse model, providing a new way to evaluate lesion heterogeneity during disease progression and after DMT. On clinical translation, these methods hold great potential for stratifying patients, monitoring MS progression, and determining therapy responses.


Asunto(s)
Esclerosis Múltiple
12.
EJNMMI Phys ; 4(1): 16, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28466279

RESUMEN

BACKGROUND: The correction of γ-photon attenuation in PET-MRI remains a critical issue, especially for bone attenuation. This problem is of great importance for brain studies due to the density of the skull. Current techniques for skull attenuation correction (AC) provide indirect estimates of cortical bone density, leading to inaccurate estimates of brain activity. The purpose of this study was to develop an alternate method for bone attenuation correction based on NMR. The proposed approach relies on the detection of hydroxyapatite crystals by zero echo time (ZTE) MRI of 31P, providing individual and quantitative assessment of bone density. This work presents a proof of concept of this approach. The first step of the method is a calibration experiment to determine the conversion relationship between the 31P signal and the linear attenuation coefficient µ. Then 31P-ZTE was performed in vivo in rodent to estimate the µ-map of the skull. 18F-FDG PET data were acquired in the same animal and reconstructed with three different AC methods: 31P-based AC, AC neglecting the bone and the gold standard, CT-based AC, used to comparison for the other two methods. RESULTS: The calibration experiment provided a conversion factor of 31P signal into µ. In vivo 31P-ZTE made it possible to acquire 3D images of the rat skull. Brain PET images showed underestimation of 18F activity in peripheral regions close to the skull when AC neglected the bone (as compared with CT-based AC). The use of 31P-derived µ-map for AC leads to increased peripheral activity, and therefore a global overestimation of brain 18F activity. CONCLUSIONS: In vivo 31P-ZTE MRI of hydroxyapatite provides µ-map of the skull, which can be used for attenuation correction of 18F-FDG PET images. This study is limited by several intrinsic biases associated with the size of the rat brain, which are unlikely to affect human data on a clinical PET-MRI system.

13.
J Cereb Blood Flow Metab ; 36(9): 1513-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27354096

RESUMEN

With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Química Encefálica , Espectroscopía de Resonancia Magnética/métodos , Fosfatos/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Metabolismo Energético/fisiología , Isótopos de Fósforo , Ratas
14.
PLoS One ; 10(3): e0122224, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25816143

RESUMEN

OBJECTIVE: To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. MATERIALS AND METHODS: A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects' images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. RESULTS: Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. CONCLUSION: A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template.


Asunto(s)
Médula Cervical/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Automatización , Humanos , Atrofia Muscular Espinal/diagnóstico por imagen , Radiografía , Traumatismos de la Médula Espinal/diagnóstico por imagen
15.
PLoS One ; 8(4): e60312, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23573246

RESUMEN

Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex--specifically the medial prefrontal cortex (mPFC)--and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc), dorsomedial thalamus (DMT), and periaqueductal grey (PAG). It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia.


Asunto(s)
Conectoma , Ácido Glutámico/metabolismo , Neurotransmisores/metabolismo , Corteza Prefrontal/fisiología , Adolescente , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Núcleo Accumbens/fisiología , Sustancia Gris Periacueductal/fisiología , Descanso/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA