Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Card Fail ; 29(7): 1017-1028, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36706977

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is life-threatening, and often diagnosed late in its course. We aimed to evaluate if a deep learning approach using electrocardiogram (ECG) data alone can detect PH and clinically important subtypes. We asked: does an automated deep learning approach to ECG interpretation detect PH and its clinically important subtypes? METHODS AND RESULTS: Adults with right heart catheterization or an echocardiogram within 90 days of an ECG at the University of California, San Francisco (2012-2019) were retrospectively identified as PH or non-PH. A deep convolutional neural network was trained on patients' 12-lead ECG voltage data. Patients were divided into training, development, and test sets in a ratio of 7:1:2. Overall, 5016 PH and 19,454 patients without PH were used in the study. The mean age at the time of ECG was 62.29 ± 17.58 years and 49.88% were female. The mean interval between ECG and right heart catheterization or echocardiogram was 3.66 and 2.23 days for patients with PH and patients without PH, respectively. In the test dataset, the model achieved an area under the receiver operating characteristic curve, sensitivity, and specificity, respectively of 0.89, 0.79, and 0.84 to detect PH; 0.91, 0.83, and 0.84 to detect precapillary PH; 0.88, 0.81, and 0.81 to detect pulmonary arterial hypertension, and 0.80, 0.73, and 0.76 to detect group 3 PH. We additionally applied the trained model on ECGs from participants in the test dataset that were obtained from up to 2 years before diagnosis of PH; the area under the receiver operating characteristic curve was 0.79 or greater. CONCLUSIONS: A deep learning ECG algorithm can detect PH and PH subtypes around the time of diagnosis and can detect PH using ECGs that were done up to 2 years before right heart catheterization/echocardiogram diagnosis. This approach has the potential to decrease diagnostic delays in PH.


Asunto(s)
Aprendizaje Profundo , Insuficiencia Cardíaca , Hipertensión Pulmonar , Adulto , Humanos , Femenino , Masculino , Hipertensión Pulmonar/diagnóstico , Estudios Retrospectivos , Electrocardiografía/métodos
2.
Nurs Res ; 72(4): 310-318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37350699

RESUMEN

BACKGROUND: Engagement with self-monitoring of blood pressure (BP) declines, on average, over time but may vary substantially by individual. OBJECTIVES: We aimed to describe different 1-year patterns (groups) of self-monitoring of BP behaviors, identify predictors of those groups, and examine the association of self-monitoring of BP groups with BP levels over time. METHODS: We analyzed device-recorded BP measurements collected by the Health eHeart Study-an ongoing prospective eCohort study-from participants with a wireless consumer-purchased device that transmitted date- and time-stamped BP data to the study through a full 12 months of observation starting from the first day they used the device. Participants received no instruction on device use. We applied clustering analysis to identify 1-year self-monitoring, of BP patterns. RESULTS: Participants had a mean age of 52 years and were male and White. Using clustering algorithms, we found that a model with three groups fit the data well: persistent daily use (9.1% of participants), persistent weekly use (21.2%), and sporadic use only (69.7%). Persistent daily use was more common among older participants who had higher Week 1 self-monitoring of BP frequency and was associated with lower BP levels than the persistent weekly use or sporadic use groups throughout the year. CONCLUSION: We identified three distinct self-monitoring of BP groups, with nearly 10% sustaining a daily use pattern associated with lower BP levels.


Asunto(s)
Monitoreo Ambulatorio de la Presión Arterial , Hipertensión , Humanos , Masculino , Persona de Mediana Edad , Femenino , Presión Sanguínea/fisiología , Estudios Prospectivos , Estudios Longitudinales
3.
Circulation ; 138(16): 1623-1635, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30354459

RESUMEN

BACKGROUND: Automated cardiac image interpretation has the potential to transform clinical practice in multiple ways, including enabling serial assessment of cardiac function by nonexperts in primary care and rural settings. We hypothesized that advances in computer vision could enable building a fully automated, scalable analysis pipeline for echocardiogram interpretation, including (1) view identification, (2) image segmentation, (3) quantification of structure and function, and (4) disease detection. METHODS: Using 14 035 echocardiograms spanning a 10-year period, we trained and evaluated convolutional neural network models for multiple tasks, including automated identification of 23 viewpoints and segmentation of cardiac chambers across 5 common views. The segmentation output was used to quantify chamber volumes and left ventricular mass, determine ejection fraction, and facilitate automated determination of longitudinal strain through speckle tracking. Results were evaluated through comparison to manual segmentation and measurements from 8666 echocardiograms obtained during the routine clinical workflow. Finally, we developed models to detect 3 diseases: hypertrophic cardiomyopathy, cardiac amyloid, and pulmonary arterial hypertension. RESULTS: Convolutional neural networks accurately identified views (eg, 96% for parasternal long axis), including flagging partially obscured cardiac chambers, and enabled the segmentation of individual cardiac chambers. The resulting cardiac structure measurements agreed with study report values (eg, median absolute deviations of 15% to 17% of observed values for left ventricular mass, left ventricular diastolic volume, and left atrial volume). In terms of function, we computed automated ejection fraction and longitudinal strain measurements (within 2 cohorts), which agreed with commercial software-derived values (for ejection fraction, median absolute deviation=9.7% of observed, N=6407 studies; for strain, median absolute deviation=7.5%, n=419, and 9.0%, n=110) and demonstrated applicability to serial monitoring of patients with breast cancer for trastuzumab cardiotoxicity. Overall, we found automated measurements to be comparable or superior to manual measurements across 11 internal consistency metrics (eg, the correlation of left atrial and ventricular volumes). Finally, we trained convolutional neural networks to detect hypertrophic cardiomyopathy, cardiac amyloidosis, and pulmonary arterial hypertension with C statistics of 0.93, 0.87, and 0.85, respectively. CONCLUSIONS: Our pipeline lays the groundwork for using automated interpretation to support serial patient tracking and scalable analysis of millions of echocardiograms archived within healthcare systems.


Asunto(s)
Amiloidosis/diagnóstico por imagen , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Aprendizaje Profundo , Ecocardiografía/métodos , Hipertensión Pulmonar/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Amiloidosis/fisiopatología , Automatización , Cardiomiopatía Hipertrófica/fisiopatología , Humanos , Hipertensión Pulmonar/fisiopatología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Volumen Sistólico , Función Ventricular Izquierda
4.
J Behav Med ; 42(5): 873-882, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30649648

RESUMEN

Self-weighing may promote attainment and maintenance of healthy weight; however, the natural temporal patterns and factors associated with self-weighing behavior are unclear. The aims of this secondary analysis were to (1) identify distinct temporal patterns of self-weighing behaviors; (2) explore factors associated with temporal self-weighing patterns; and (3) examine differences in percent weight changes by patterns of self-weighing over time. We analyzed electronically collected self-weighing data from the Health eHeart Study, an ongoing longitudinal research study coordinated by the University of California, San Francisco. We selected participants with at least 12 months of data since the day of first use of a WiFi- or Bluetooth-enabled digital scale. The sample (N = 1041) was predominantly male (77.5%) and White (89.9%), with a mean age of 46.5 ± 12.3 years and a mean BMI of 28.3 ± 5.9 kg/m2 at entry. Using group-based trajectory modeling, six distinct temporal patterns of self-weighing were identified: non-users (n = 120, 11.5%), weekly users (n = 189, 18.2%), rapid decliners (n = 109, 10.5%), increasing users (n = 160, 15.4%), slow decliners (n = 182, 17.5%), and persistent daily users (n = 281, 27.0%). Individuals who were older, female, or self-weighed 6-7 days/week at week 1 were more likely to follow the self-weighing pattern of persistent daily users. Predicted self-weighing trajectory group membership was significantly associated with weight change over time (p < .001). In conclusion, we identified six distinct patterns of self-weighing behavior over the 12-month period. Persistent daily users lost more weight compared with groups with less frequent patterns of scale use.


Asunto(s)
Peso Corporal , Autocuidado/psicología , Factores de Edad , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico , Obesidad , Factores Sexuales , Factores de Tiempo
6.
JACC Clin Electrophysiol ; 10(2): 334-345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38340117

RESUMEN

BACKGROUND: Continuous monitoring for atrial fibrillation (AF) using photoplethysmography (PPG) from smartwatches or other wearables is challenging due to periods of poor signal quality during motion or suboptimal wearing. As a result, many consumer wearables sample infrequently and only analyze when the user is at rest, which limits the ability to perform continuous monitoring or to quantify AF. OBJECTIVES: This study aimed to compare 2 methods of continuous monitoring for AF in free-living patients: a well-validated signal processing (SP) heuristic and a convolutional deep neural network (DNN) trained on raw signal. METHODS: We collected 4 weeks of continuous PPG and electrocardiography signals in 204 free-living patients. Both SP and DNN models were developed and validated both on holdout patients and an external validation set. RESULTS: The results show that the SP model demonstrated receiver-operating characteristic area under the curve (AUC) of 0.972 (sensitivity 99.6%, specificity: 94.4%), which was similar to the DNN receiver-operating characteristic AUC of 0.973 (sensitivity 92.2, specificity: 95.5%); however, the DNN classified significantly more data (95% vs 62%), revealing its superior tolerance of tracings prone to motion artifact. Explainability analysis revealed that the DNN automatically suppresses motion artifacts, evaluates irregularity, and learns natural AF interbeat variability. The DNN performed better and analyzed more signal in the external validation cohort using a different population and PPG sensor (AUC, 0.994; 97% analyzed vs AUC, 0.989; 88% analyzed). CONCLUSIONS: DNNs perform at least as well as SP models, classify more data, and thus may be better for continuous PPG monitoring.


Asunto(s)
Fibrilación Atrial , Aprendizaje Profundo , Humanos , Fibrilación Atrial/diagnóstico , Fotopletismografía/métodos , Heurística , Monitoreo Fisiológico
7.
NPJ Digit Med ; 7(1): 138, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783037

RESUMEN

The coronary angiogram is the gold standard for evaluating the severity of coronary artery disease stenoses. Presently, the assessment is conducted visually by cardiologists, a method that lacks standardization. This study introduces DeepCoro, a ground-breaking AI-driven pipeline that integrates advanced vessel tracking and a video-based Swin3D model that was trained and validated on a dataset comprised of 182,418 coronary angiography videos spanning 5 years. DeepCoro achieved a notable precision of 71.89% in identifying coronary artery segments and demonstrated a mean absolute error of 20.15% (95% CI: 19.88-20.40) and a classification AUROC of 0.8294 (95% CI: 0.8215-0.8373) in stenosis percentage prediction compared to traditional cardiologist assessments. When compared to two expert interventional cardiologists, DeepCoro achieved lower variability than the clinical reports (19.09%; 95% CI: 18.55-19.58 vs 21.00%; 95% CI: 20.20-21.76, respectively). In addition, DeepCoro can be fine-tuned to a different modality type. When fine-tuned on quantitative coronary angiography assessments, DeepCoro attained an even lower mean absolute error of 7.75% (95% CI: 7.37-8.07), underscoring the reduced variability inherent to this method. This study establishes DeepCoro as an innovative video-based, adaptable tool in coronary artery disease analysis, significantly enhancing the precision and reliability of stenosis assessment.

8.
J Am Coll Cardiol ; 83(24): 2487-2496, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38593945

RESUMEN

Recent artificial intelligence (AI) advancements in cardiovascular care offer potential enhancements in effective diagnosis, treatment, and outcomes. More than 600 U.S. Food and Drug Administration-approved clinical AI algorithms now exist, with 10% focusing on cardiovascular applications, highlighting the growing opportunities for AI to augment care. This review discusses the latest advancements in the field of AI, with a particular focus on the utilization of multimodal inputs and the field of generative AI. Further discussions in this review involve an approach to understanding the larger context in which AI-augmented care may exist, and include a discussion of the need for rigorous evaluation, appropriate infrastructure for deployment, ethics and equity assessments, regulatory oversight, and viable business cases for deployment. Embracing this rapidly evolving technology while setting an appropriately high evaluation benchmark with careful and patient-centered implementation will be crucial for cardiology to leverage AI to enhance patient care and the provider experience.


Asunto(s)
Inteligencia Artificial , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/diagnóstico , Cardiología
9.
J Am Coll Cardiol ; 83(24): 2472-2486, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38593946

RESUMEN

Recent artificial intelligence (AI) advancements in cardiovascular care offer potential enhancements in diagnosis, treatment, and outcomes. Innovations to date focus on automating measurements, enhancing image quality, and detecting diseases using novel methods. Applications span wearables, electrocardiograms, echocardiography, angiography, genetics, and more. AI models detect diseases from electrocardiograms at accuracy not previously achieved by technology or human experts, including reduced ejection fraction, valvular heart disease, and other cardiomyopathies. However, AI's unique characteristics necessitate rigorous validation by addressing training methods, real-world efficacy, equity concerns, and long-term reliability. Despite an exponentially growing number of studies in cardiovascular AI, trials showing improvement in outcomes remain lacking. A number are currently underway. Embracing this rapidly evolving technology while setting a high evaluation benchmark will be crucial for cardiology to leverage AI to enhance patient care and the provider experience.


Asunto(s)
Inteligencia Artificial , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/diagnóstico , Cardiología/métodos
10.
Sci Rep ; 13(1): 3364, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849487

RESUMEN

Chest pain is a common clinical complaint for which myocardial injury is the primary concern and is associated with significant morbidity and mortality. To aid providers' decision-making, we aimed to analyze the electrocardiogram (ECG) using a deep convolutional neural network (CNN) to predict serum troponin I (TnI) from ECGs. We developed a CNN using 64,728 ECGs from 32,479 patients who underwent ECG within 2 h prior to a serum TnI laboratory result at the University of California, San Francisco (UCSF). In our primary analysis, we classified patients into groups of TnI < 0.02 or ≥ 0.02 µg/L using 12-lead ECGs. This was repeated with an alternative threshold of 1.0 µg/L and with single-lead ECG inputs. We also performed multiclass prediction for a set of serum troponin ranges. Finally, we tested the CNN in a cohort of patients selected for coronary angiography, including 3038 ECGs from 672 patients. Cohort patients were 49.0% female, 42.8% white, and 59.3% (19,283) never had a positive TnI value (≥ 0.02 µg/L). CNNs accurately predicted elevated TnI, both at a threshold of 0.02 µg/L (AUC = 0.783, 95% CI 0.780-0.786) and at a threshold of 1.0 µg/L (AUC = 0.802, 0.795-0.809). Models using single-lead ECG data achieved significantly lower accuracy, with AUCs ranging from 0.740 to 0.773 with variation by lead. Accuracy of the multi-class model was lower for intermediate TnI value-ranges. Our models performed similarly on the cohort of patients who underwent coronary angiography. Biomarker-defined myocardial injury can be predicted by CNNs from 12-lead and single-lead ECGs.


Asunto(s)
Aprendizaje Profundo , Lesiones Cardíacas , Humanos , Femenino , Masculino , Troponina I , Área Bajo la Curva , Biomarcadores , Electrocardiografía , Lesiones Cardíacas/diagnóstico
11.
JAMA Cardiol ; 8(6): 586-594, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163297

RESUMEN

Importance: Understanding left ventricular ejection fraction (LVEF) during coronary angiography can assist in disease management. Objective: To develop an automated approach to predict LVEF from left coronary angiograms. Design, Setting, and Participants: This was a cross-sectional study with external validation using patient data from December 12, 2012, to December 31, 2019, from the University of California, San Francisco (UCSF). Data were randomly split into training, development, and test data sets. External validation data were obtained from the University of Ottawa Heart Institute. Included in the analysis were all patients 18 years or older who received a coronary angiogram and transthoracic echocardiogram (TTE) within 3 months before or 1 month after the angiogram. Exposure: A video-based deep neural network (DNN) called CathEF was used to discriminate (binary) reduced LVEF (≤40%) and to predict (continuous) LVEF percentage from standard angiogram videos of the left coronary artery. Guided class-discriminative gradient class activation mapping (GradCAM) was applied to visualize pixels in angiograms that contributed most to DNN LVEF prediction. Results: A total of 4042 adult angiograms with corresponding TTE LVEF from 3679 UCSF patients were included in the analysis. Mean (SD) patient age was 64.3 (13.3) years, and 2212 patients were male (65%). In the UCSF test data set (n = 813), the video-based DNN discriminated (binary) reduced LVEF (≤40%) with an area under the receiver operating characteristic curve (AUROC) of 0.911 (95% CI, 0.887-0.934); diagnostic odds ratio for reduced LVEF was 22.7 (95% CI, 14.0-37.0). DNN-predicted continuous LVEF had a mean absolute error (MAE) of 8.5% (95% CI, 8.1%-9.0%) compared with TTE LVEF. Although DNN-predicted continuous LVEF differed 5% or less compared with TTE LVEF in 38.0% (309 of 813) of test data set studies, differences greater than 15% were observed in 15.2% (124 of 813). In external validation (n = 776), video-based DNN discriminated (binary) reduced LVEF (≤40%) with an AUROC of 0.906 (95% CI, 0.881-0.931), and DNN-predicted continuous LVEF had an MAE of 7.0% (95% CI, 6.6%-7.4%). Video-based DNN tended to overestimate low LVEFs and underestimate high LVEFs. Video-based DNN performance was consistent across sex, body mass index, low estimated glomerular filtration rate (≤45), presence of acute coronary syndromes, obstructive coronary artery disease, and left ventricular hypertrophy. Conclusion and relevance: This cross-sectional study represents an early demonstration of estimating LVEF from standard angiogram videos of the left coronary artery using video-based DNNs. Further research can improve accuracy and reduce the variability of DNNs to maximize their clinical utility.


Asunto(s)
Disfunción Ventricular Izquierda , Función Ventricular Izquierda , Adulto , Humanos , Masculino , Persona de Mediana Edad , Femenino , Función Ventricular Izquierda/fisiología , Angiografía Coronaria , Volumen Sistólico/fisiología , Inteligencia Artificial , Disfunción Ventricular Izquierda/diagnóstico por imagen , Estudios Transversales , Algoritmos
12.
Heart Rhythm O2 ; 4(8): 491-499, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37645266

RESUMEN

Background: It remains difficult to definitively distinguish supraventricular tachycardia (SVT) mechanisms using a 12-lead electrocardiogram (ECG) alone. Machine learning may identify visually imperceptible changes on 12-lead ECGs and may improve ability to determine SVT mechanisms. Objective: We sought to develop a convolutional neural network (CNN) that identifies the SVT mechanism according to the gold standard of SVT ablation and to compare CNN performance against experienced electrophysiologists among patients with atrioventricular nodal re-entrant tachycardia (AVNRT), atrioventricular reciprocating tachycardia (AVRT), and atrial tachycardia (AT). Methods: All patients with 12-lead surface ECG during sinus rhythm and SVT and had successful SVT ablation from 2013 to 2020 were included. A CNN was trained using data from 1505 surface ECGs that were split into 1287 training and 218 test ECG datasets. We compared the CNN performance against independent adjudication by 2 experienced cardiac electrophysiologists on the test dataset. Results: Our dataset comprised 1505 ECGs (368 AVNRT, 304 AVRT, 95 AT, and 738 sinus rhythm) from 725 patients. The CNN areas under the receiver-operating characteristic curve for AVNRT, AVRT, and AT were 0.909, 0.867, and 0.817, respectively. When fixing the specificity of the CNN to the electrophysiologist adjudicators' specificity, the CNN identified all SVT classes with higher sensitivity: (1) AVNRT (91.7% vs 65.9%), (2) AVRT (78.4% vs 63.6%), and (3) AT (61.5% vs 50.0%). Conclusion: A CNN can be trained to differentiate SVT mechanisms from surface 12-lead ECGs with high overall performance, achieving similar performance to experienced electrophysiologists at fixed specificities.

13.
NPJ Digit Med ; 6(1): 142, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568050

RESUMEN

Coronary angiography is the primary procedure for diagnosis and management decisions in coronary artery disease (CAD), but ad-hoc visual assessment of angiograms has high variability. Here we report a fully automated approach to interpret angiographic coronary artery stenosis from standard coronary angiograms. Using 13,843 angiographic studies from 11,972 adult patients at University of California, San Francisco (UCSF), between April 1, 2008 and December 31, 2019, we train neural networks to accomplish four sequential necessary tasks for automatic coronary artery stenosis localization and estimation. Algorithms are internally validated against criterion-standard labels for each task in hold-out test datasets. Algorithms are then externally validated in real-world angiograms from the University of Ottawa Heart Institute (UOHI) and also retrained using quantitative coronary angiography (QCA) data from the Montreal Heart Institute (MHI) core lab. The CathAI system achieves state-of-the-art performance across all tasks on unselected, real-world angiograms. Positive predictive value, sensitivity and F1 score are all ≥90% to identify projection angle and ≥93% for left/right coronary artery angiogram detection. To predict obstructive CAD stenosis (≥70%), CathAI exhibits an AUC of 0.862 (95% CI: 0.843-0.880). In UOHI external validation, CathAI achieves AUC 0.869 (95% CI: 0.830-0.907) to predict obstructive CAD. In the MHI QCA dataset, CathAI achieves an AUC of 0.775 (95%. CI: 0.594-0.955) after retraining. In conclusion, multiple purpose-built neural networks can function in sequence to accomplish automated analysis of real-world angiograms, which could increase standardization and reproducibility in angiographic coronary stenosis assessment.

14.
JACC Adv ; 2(6)2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37936601

RESUMEN

BACKGROUND: Mitral valve prolapse (MVP) is a common valvulopathy, with a subset developing sudden cardiac death or cardiac arrest. Complex ventricular ectopy (ComVE) is a marker of arrhythmic risk associated with myocardial fibrosis and increased mortality in MVP. OBJECTIVES: The authors sought to evaluate whether electrocardiogram (ECG)-based machine learning can identify MVP at risk for ComVE, death and/or myocardial fibrosis on cardiac magnetic resonance (CMR) imaging. METHODS: A deep convolutional neural network (CNN) was trained to detect ComVE using 6,916 12-lead ECGs from 569 MVP patients from the University of California-San Francisco between 2012 and 2020. A separate CNN was trained to detect late gadolinium enhancement (LGE) using 1,369 ECGs from 87 MVP patients with contrast CMR. RESULTS: The prevalence of ComVE was 28% (160/569). The area under the receiver operating characteristic curve (AUC) of the CNN to detect ComVE was 0.80 (95% CI: 0.77-0.83) and remained high after excluding patients with moderate-severe mitral regurgitation [0.80 (95% CI: 0.77-0.83)] or bileaflet MVP [0.81 (95% CI: 0.76-0.85)]. AUC to detect all-cause mortality was 0.82 (95% CI: 0.77-0.87). ECG segments relevant to ComVE prediction were related to ventricular depolarization/repolarization (early-mid ST-segment and QRS from V1, V3, and III). LGE in the papillary muscles or basal inferolateral wall was present in 24% patients with available CMR; AUC for detection of LGE was 0.75 (95% CI: 0.68-0.82). CONCLUSIONS: CNN-analyzed 12-lead ECGs can detect MVP at risk for ventricular arrhythmias, death and/or fibrosis and can identify novel ECG correlates of arrhythmic risk. ECG-based CNNs may help select those MVP patients requiring closer follow-up and/or a CMR.

15.
Cardiovasc Digit Health J ; 4(6): 183-190, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38222101

RESUMEN

Background: Heart failure (HF) is a progressive condition with high global incidence. HF has two main subtypes: HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF). There is an inherent need for simple yet effective electrocardiogram (ECG)-based artificial intelligence (AI; ECG-AI) models that can predict HF risk early to allow for risk modification. Objective: The main objectives were to validate HF risk prediction models using Multi-Ethnic Study of Atherosclerosis (MESA) data and assess performance on HFpEF and HFrEF classification. Methods: There were six models in comparision derived using ARIC data. 1) The ECG-AI model predicting HF risk was developed using raw 12-lead ECGs with a convolutional neural network. The clinical models from 2) ARIC (ARIC-HF) and 3) Framingham Heart Study (FHS-HF) used 9 and 8 variables, respectively. 4) Cox proportional hazards (CPH) model developed using the clinical risk factors in ARIC-HF or FHS-HF. 5) CPH model using the outcome of ECG-AI and the clinical risk factors used in CPH model (ECG-AI-Cox) and 6) A Light Gradient Boosting Machine model using 288 ECG Characteristics (ECG-Chars). All the models were validated on MESA. The performances of these models were evaluated using the area under the receiver operating characteristic curve (AUC) and compared using the DeLong test. Results: ECG-AI, ECG-Chars, and ECG-AI-Cox resulted in validation AUCs of 0.77, 0.73, and 0.84, respectively. ARIC-HF and FHS-HF yielded AUCs of 0.76 and 0.74, respectively, and CPH resulted in AUC = 0.78. ECG-AI-Cox outperformed all other models. ECG-AI-Cox provided an AUC of 0.85 for HFrEF and 0.83 for HFpEF. Conclusion: ECG-AI using ECGs provides better-validated predictions when compared to HF risk calculators, and the ECG feature model and also works well with HFpEF and HFrEF classification.

16.
JACC Adv ; 2(8)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38076758

RESUMEN

BACKGROUND: Artificial intelligence (AI) applied to 12-lead electrocardiographs (ECGs) can detect hypertrophic cardiomyopathy (HCM). OBJECTIVES: The purpose of this study was to determine if AI-enhanced ECG (AI-ECG) can track longitudinal therapeutic response and changes in cardiac structure, function, or hemodynamics in obstructive HCM during mavacamten treatment. METHODS: We applied 2 independently developed AI-ECG algorithms (University of California-San Francisco and Mayo Clinic) to serial ECGs (n = 216) from the phase 2 PIONEER-OLE trial of mavacamten for symptomatic obstructive HCM (n = 13 patients, mean age 57.8 years, 69.2% male). Control ECGs from 2,600 age- and sex-matched individuals without HCM were obtained. AI-ECG output was correlated longitudinally to echocardiographic and laboratory metrics of mavacamten treatment response. RESULTS: In the validation cohorts, both algorithms exhibited similar performance for HCM diagnosis, and exhibited mean HCM score decreases during mavacamten treatment: patient-level score reduction ranged from approximately 0.80 to 0.45 for Mayo and 0.70 to 0.35 for USCF algorithms; 11 of 13 patients demonstrated absolute score reduction from start to end of follow-up for both algorithms. HCM scores were significantly associated with other HCM-relevant parameters, including left ventricular outflow tract gradient at rest, postexercise, and with Valsalva, and NT-proBNP level, independent of age and sex (all P < 0.01). For both algorithms, the strongest longitudinal correlation was between AI-ECG HCM score and left ventricular outflow tract gradient postexercise (slope estimate: University of California-San Francisco 0.70 [95% CI: 0.45-0.96], P < 0.0001; Mayo 0.40 [95% CI: 0.11-0.68], P = 0.007). CONCLUSIONS: AI-ECG analysis longitudinally correlated with changes in echocardiographic and laboratory markers during mavacamten treatment in obstructive HCM. These results provide early evidence for a potential paradigm for monitoring HCM therapeutic response.

17.
Cell Rep Med ; 3(1): 100504, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35106513

RESUMEN

A recent study by Karwath et al.1 in The Lancet applied machine learning-based cluster analysis to pooled data from nine double-blind, randomized controlled trials of beta blockers, identifying subgroups of efficacy in patients with sinus rhythm and atrial fibrillation.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Antagonistas Adrenérgicos beta/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Método Doble Ciego , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Aprendizaje Automático
18.
Cell Rep Med ; 3(12): 100869, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36543095

RESUMEN

Recent advances in machine learning (ML) have made it possible to analyze high-dimensional and complex data-such as free text, images, waveforms, videos, and sound-in an automated manner by successfully learning complex associations within these data. Cardiovascular medicine is particularly well poised to take advantage of these ML advances, due to the widespread digitization of medical data and the large number of diagnostic tests used to evaluate cardiovascular disease. Various ML approaches have successfully been applied to cardiovascular tests and diseases to automate interpretation, accurately perform measurements, and, in some cases, predict novel diagnoses from less invasive tests, effectively expanding the utility of more widely accessible diagnostic tests. Here, we present examples of some impactful advances in cardiovascular medicine using ML across a variety of modalities, with a focus on deep learning applications.


Asunto(s)
Enfermedades Cardiovasculares , Aprendizaje Automático , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/terapia
19.
J Am Coll Cardiol ; 80(6): 613-626, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926935

RESUMEN

BACKGROUND: Valvular heart disease is an important contributor to cardiovascular morbidity and mortality and remains underdiagnosed. Deep learning analysis of electrocardiography (ECG) may be useful in detecting aortic stenosis (AS), aortic regurgitation (AR), and mitral regurgitation (MR). OBJECTIVES: This study aimed to develop ECG deep learning algorithms to identify moderate or severe AS, AR, and MR alone and in combination. METHODS: A total of 77,163 patients undergoing ECG within 1 year before echocardiography from 2005-2021 were identified and split into train (n = 43,165), validation (n = 12,950), and test sets (n = 21,048; 7.8% with any of AS, AR, or MR). Model performance was assessed using area under the receiver-operating characteristic (AU-ROC) and precision-recall curves. Outside validation was conducted on an independent data set. Test accuracy was modeled using different disease prevalence levels to simulate screening efficacy using the deep learning model. RESULTS: The deep learning algorithm model accuracy was as follows: AS (AU-ROC: 0.88), AR (AU-ROC: 0.77), MR (AU-ROC: 0.83), and any of AS, AR, or MR (AU-ROC: 0.84; sensitivity 78%, specificity 73%) with similar accuracy in external validation. In screening program modeling, test characteristics were dependent on underlying prevalence and selected sensitivity levels. At a prevalence of 7.8%, the positive and negative predictive values were 20% and 97.6%, respectively. CONCLUSIONS: Deep learning analysis of the ECG can accurately detect AS, AR, and MR in this multicenter cohort and may serve as the basis for the development of a valvular heart disease screening program.


Asunto(s)
Insuficiencia de la Válvula Aórtica , Estenosis de la Válvula Aórtica , Aprendizaje Profundo , Enfermedades de las Válvulas Cardíacas , Insuficiencia de la Válvula Mitral , Insuficiencia de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/diagnóstico , Electrocardiografía , Enfermedades de las Válvulas Cardíacas/diagnóstico , Enfermedades de las Válvulas Cardíacas/epidemiología , Humanos , Insuficiencia de la Válvula Mitral/diagnóstico , Insuficiencia de la Válvula Mitral/epidemiología
20.
J Cardiol ; 77(3): 279-284, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33158713

RESUMEN

BACKGROUND: Pulmonary arterial capacitance (PAC) is one of the strongest predictors of clinical outcomes in patients with pulmonary hypertension (PH). We examined the value of an echocardiographic surrogate for PAC (ePAC) as a predictor of mortality in patients with PH. METHODS: We performed a retrospective study of 302 patients with PH managed at a PH comprehensive care center over a cumulative follow-up time of 858 patient-years. Charts from 2004 to 2018 were reviewed to identify patients in whom a right heart catheterization (RHC) was performed within two months of an echocardiogram. Standard invasive, non-invasive, functional, and biochemical prognostic markers were extracted from the time of RHC. The primary outcome was all-cause mortality. Cox proportional hazards models were used to model the time from RHC to the primary outcome or last medical contact. RESULTS: Variables associated with all-cause mortality included ePAC [standardized hazard ratio (HR) 0.68, 95% CI 0.48-0.98, p = 0.036], RHC-PAC (HR 0.68, 95% CI 0.48-0.96, p = 0.027), echocardiographic pulmonary vascular resistance (HR 1.29, 95% CI 1.05-1.60, p = 0.017), six-minute walk distance (HR 0.43, 95% CI 0.23-0.82, p = 0.01), and B-type natriuretic peptide (HR 1.29, 95% CI 1.03-1.62, p = 0.027). In multivariable-adjusted Cox analysis, ePAC predicted all-cause mortality independently of age, gender, and multiple comorbidities. There was a graded and stepwise association between low (<0.15 cm/mmHg), medium (0.15-0.25 cm/mmHg), and high (>0.25 cm/mmHg) tertiles of ePAC and all-cause mortality. CONCLUSIONS: We have demonstrated that ePAC is a readily available echocardiographic marker that independently predicts mortality in PH, and have provided clinically relevant ranges by which to risk-stratify patients and predict mortality.


Asunto(s)
Hipertensión Pulmonar , Cateterismo Cardíaco , Ecocardiografía , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Pronóstico , Arteria Pulmonar/diagnóstico por imagen , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA