Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D900-D908, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37933854

RESUMEN

Ageing is a complex and multifactorial process. For two decades, the Human Ageing Genomic Resources (HAGR) have aided researchers in the study of various aspects of ageing and its manipulation. Here, we present the key features and recent enhancements of these resources, focusing on its six main databases. One database, GenAge, focuses on genes related to ageing, featuring 307 genes linked to human ageing and 2205 genes associated with longevity and ageing in model organisms. AnAge focuses on ageing, longevity, and life-history across animal species, containing data on 4645 species. DrugAge includes information about 1097 longevity drugs and compounds in model organisms such as mice, rats, flies, worms and yeast. GenDR provides a list of 214 genes associated with the life-extending benefits of dietary restriction in model organisms. CellAge contains a catalogue of 866 genes associated with cellular senescence. The LongevityMap serves as a repository for genetic variants associated with human longevity, encompassing 3144 variants pertaining to 884 genes. Additionally, HAGR provides various tools as well as gene expression signatures of ageing, dietary restriction, and replicative senescence based on meta-analyses. Our databases are integrated, regularly updated, and manually curated by experts. HAGR is freely available online (https://genomics.senescence.info/).


Asunto(s)
Envejecimiento , Bases de Datos Genéticas , Genómica , Animales , Humanos , Envejecimiento/genética , Senescencia Celular , Longevidad/genética
2.
J Proteome Res ; 20(12): 5359-5367, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34734728

RESUMEN

Modern shotgun proteomics experiments generate gigabytes of spectra every hour, only a fraction of which were utilized to form biological conclusions. Instead of being stored as flat files in public data repositories, this large amount of data can be better organized to facilitate data reuse. Clustering these spectra by similarity can be helpful in building high-quality spectral libraries, correcting identification errors, and highlighting frequently observed but unidentified spectra. However, large-scale clustering is time-consuming. Here, we present ClusterSheep, a method utilizing Graphics Processing Units (GPUs) to accelerate the process. Unlike previously proposed algorithms for this purpose, our method performs true pairwise comparison of all spectra within a precursor mass-to-charge ratio tolerance, thereby preserving the full cluster structures. ClusterSheep was benchmarked against previously reported clustering tools, MS-Cluster, MaRaCluster, and msCRUSH. The software tool also functions as an interactive visualization tool with a persistent state, enabling the user to explore the resulting clusters visually and retrieve the clustering results as desired.


Asunto(s)
Proteómica , Programas Informáticos , Algoritmos , Análisis por Conglomerados , Bases de Datos de Proteínas , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA