RESUMEN
The striatum can be divided into four anatomically and functionally distinct domains: the dorsolateral, dorsomedial, ventral and the more recently identified caudolateral (tail) striatum. Dopamine transmission in these striatal domains underlies many important behaviours, yet little is known about this phenomenon in the tail striatum. Furthermore, the tail is divided anatomically into four divisions (dorsal, medial, intermediate and lateral) based on the profile of D1 and D2 dopamine receptor-expressing medium spiny neurons, something that is not seen elsewhere in the striatum. Considering this organisation, how dopamine transmission occurs in the tail striatum is of great interest. We recorded evoked dopamine release in the four tail divisions, with comparison to the dorsolateral striatum, using fast-scan cyclic voltammetry in rat brain slices. Contributions of clearance mechanisms were investigated using dopamine transporter knockout (DAT-KO) rats, pharmacological transporter inhibitors and dextran. Evoked dopamine release in all tail divisions was smaller in amplitude than in the dorsolateral striatum and, importantly, regional variation was observed: dorsolateral ≈ lateral > medial > dorsal ≈ intermediate. Release amplitudes in the lateral division were 300% of that in the intermediate division, which also exhibited uniquely slow peak dopamine clearance velocity. Dopamine clearance in the intermediate division was most dependent on DAT, and no alternative dopamine transporters investigated (organic cation transporter-3, norepinephrine transporter and serotonin transporter) contributed significantly to dopamine clearance in any tail division. Our findings confirm that the tail striatum is not only a distinct dopamine domain but also that each tail division has unique dopamine transmission characteristics. This supports that the divisions are not only anatomically but also functionally distinct. How this segregation relates to the overall function of the tail striatum, particularly the processing of multisensory information, is yet to be determined.
Asunto(s)
Dopamina , Cola (estructura animal) , Ratas , Animales , Cuerpo Estriado , Neostriado , Antagonistas de Dopamina/farmacologíaRESUMEN
A distinct population of dopamine neurons in the substantia nigra pars lateralis (SNL) has a unique projection to the most caudolateral (tail) region of the striatum. Here, using two electrochemical techniques to measure basal dopamine and electrically evoked dopamine release in anesthetized rats, we characterized this pathway, and compared it with the 'classic' nigrostriatal pathway from neighboring substantia nigra pars compacta (SNc) dopamine neurons to the dorsolateral striatum. We found that the tail striatum constitutes a distinct dopamine domain compared with the dorsolateral striatum, with consistently lower basal and evoked dopamine, and diverse dopamine release kinetics. Importantly, electrical stimulation of the SNL and SNc evoked dopamine release in entirely separate striatal regions; the tail and dorsolateral striatum, respectively. Furthermore, we showed that stimulation of the subthalamic nucleus (STN) evoked dopamine release exclusively in the tail striatum, likely via the SNL, consistent with previous anatomical evidence of STN afferents to SNL dopamine neurons. Our work identifies the STN as an important modulator of dopamine release in a novel dopamine pathway to the tail striatum, largely independent of the classic nigrostriatal pathway, which necessitates a revision of the basal ganglia circuitry with the STN positioned as a central integrator of striatal information.
Asunto(s)
Núcleo Subtalámico , Animales , Ganglios Basales/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratas , Sustancia Negra/metabolismo , Núcleo Subtalámico/fisiologíaRESUMEN
BACKGROUND: Gangliosides are glycosphingolipids highly enriched in the brain, with important roles in cell signaling, cell-to-cell communication, and immunomodulation. Genetic defects in the ganglioside biosynthetic pathway result in severe neurodegenerative diseases, while a partial decrease in the levels of specific gangliosides was reported in Parkinson's disease and Huntington's disease. In models of both diseases and other conditions, administration of GM1-one of the most abundant gangliosides in the brain-provides neuroprotection. Most studies have focused on the direct neuroprotective effects of gangliosides on neurons, but their role in other brain cells, in particular microglia, is not known. In this study we investigated the effects of exogenous ganglioside administration and modulation of endogenous ganglioside levels on the response of microglia to inflammatory stimuli, which often contributes to initiation or exacerbation of neurodegeneration. METHODS: In vitro studies were performed using BV2 cells, mouse, rat, and human primary microglia cultures. Modulation of microglial ganglioside levels was achieved by administration of exogenous gangliosides, or by treatment with GENZ-123346 and L-t-PDMP, an inhibitor and an activator of glycolipid biosynthesis, respectively. Response of microglia to inflammatory stimuli (LPS, IL-1ß, phagocytosis of latex beads) was measured by analysis of gene expression and/or secretion of pro-inflammatory cytokines. The effects of GM1 administration on microglia activation were also assessed in vivo in C57Bl/6 mice, following intraperitoneal injection of LPS. RESULTS: GM1 decreased inflammatory microglia responses in vitro and in vivo, even when administered after microglia activation. These anti-inflammatory effects depended on the presence of the sialic acid residue in the GM1 glycan headgroup and the presence of a lipid tail. Other gangliosides shared similar anti-inflammatory effects in in vitro models, including GD3, GD1a, GD1b, and GT1b. Conversely, GM3 and GQ1b displayed pro-inflammatory activity. The anti-inflammatory effects of GM1 and other gangliosides were partially reproduced by increasing endogenous ganglioside levels with L-t-PDMP, whereas inhibition of glycolipid biosynthesis exacerbated microglial activation in response to LPS stimulation. CONCLUSIONS: Our data suggest that gangliosides are important modulators of microglia inflammatory responses and reveal that administration of GM1 and other complex gangliosides exerts anti-inflammatory effects on microglia that could be exploited therapeutically.
Asunto(s)
Antiinflamatorios/farmacología , Gangliósido G(M1)/farmacología , Inflamación/patología , Microglía/efectos de los fármacos , Animales , Células Cultivadas , Dioxanos/farmacología , Humanos , Inflamación/metabolismo , Interleucina-1beta/farmacología , Lipopolisacáridos/farmacología , Ratones , Microglía/metabolismo , Microglía/patología , Fagocitosis/efectos de los fármacos , Pirrolidinas/farmacología , RatasRESUMEN
Phenelzine (PLZ) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. This multifaceted drug has a number of pharmacological and neurochemical effects in addition to inhibition of MAO, and findings on these effects have contributed to a body of evidence indicating that PLZ also has neuroprotective/neurorescue properties. These attributes are reviewed in this paper and include catabolism to the active metabolite ß-phenylethylidenehydrazine (PEH) and effects of PLZ and PEH on the GABA-glutamate balance in brain, sequestration of reactive aldehydes, and inhibition of primary amine oxidase. Also discussed are the encouraging findings of the effects of PLZ in animal models of stroke, spinal cord injury, traumatic brain injury, and multiple sclerosis, as well other actions such as reduction of nitrative stress, reduction of the effects of a toxin on dopaminergic neurons, potential anticonvulsant actions, and effects on brain-derived neurotrophic factor, neural cell adhesion molecules, an anti-apoptotic factor, and brain levels of ornithine and N-acetylamino acids.
Asunto(s)
Antidepresivos , Inhibidores de la Monoaminooxidasa , Fármacos Neuroprotectores , Fenelzina , Animales , Antidepresivos/farmacología , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Fármacos Neuroprotectores/farmacología , Fenelzina/farmacología , Ratas , Ratas Sprague-DawleyRESUMEN
BACKGROUND: Surveillance and outcome studies for heart failure (HF) require accurate identification of patients with HF. Algorithms based on International Classification of Diseases (ICD) codes to identify HF from administrative data are inadequate owing to their relatively low sensitivity. Detailed clinical information from electronic medical records (EMRs) is potentially useful for improving ICD algorithms. This study aimed to enhance the ICD algorithm for HF definition by incorporating comprehensive information from EMRs. METHODS: The study included 2106 inpatients in Calgary, Alberta, Canada. Medical chart review was used as the reference gold standard for evaluating developed algorithms. The commonly used ICD codes for defining HF were used (namely, the ICD algorithm). The performance of different algorithms using the free text discharge summaries from a population-based EMR were compared with the ICD algorithm. These algorithms included a keyword search algorithm looking for HF-specific terms, a machine learning-based HF concept (HFC) algorithm, an EMR structured data based algorithm, and combined algorithms (the ICD and HFC combined algorithm). RESULTS: Of 2106 patients, 296 (14.1%) were patients with HF as determined by chart review. The ICD algorithm had 92.4% positive predictive value (PPV) but low sensitivity (57.4%). The EMR keyword search algorithm achieved a higher sensitivity (65.5%) than the ICD algorithm, but with a lower PPV (77.6%). The HFC algorithm achieved a better sensitivity (80.0%) and maintained a reasonable PPV (88.9%) compared with the ICD algorithm and the keyword algorithm. An even higher sensitivity (83.3%) was reached by combining the HFC and ICD algorithms, with a lower PPV (83.3%). The structured EMR data algorithm reached a sensitivity of 78% and a PPV of 54.2%. The combined EMR structured data and ICD algorithm had a higher sensitivity (82.4%), but the PPV remained low at 54.8%. All algorithms had a specificity ranging from 87.5% to 99.2%. CONCLUSIONS: Applying natural language processing and machine learning on the discharge summaries of inpatient EMR data can improve the capture of cases of HF compared with the widely used ICD algorithm. The utility of the HFC algorithm is straightforward, making it easily applied for HF case identification.
Asunto(s)
Insuficiencia Cardíaca , Clasificación Internacional de Enfermedades , Algoritmos , Registros Electrónicos de Salud , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/terapia , Humanos , Procesamiento de Lenguaje NaturalRESUMEN
Inflammatory insult to the central nervous system (CNS) can lead to development of depression, and subsequently depression is the most frequent psychiatric comorbidity following ischemic stroke, often limiting recovery and rehabilitation in patients. The initiators of inflammatory pathways in the CNS are microglia activated in response to acute ischemic stress, and anti-depressants have been shown to have anti-inflammatory effects in the CNS, promoting neuronal survival following ischemic insult. We have previously shown that the selective serotonin reuptake inhibitors (SSRIs) fluoxetine and citalopram promote neuronal survival after oxygen-glucose deprivation, an in vitro model of ischemia, by attenuating the release of glutamate and D-serine from activated microglia. Interestingly, we found that fluoxetine-treated microglial cultures contained fewer numbers of cells compared to other groups and hypothesized that fluoxetine and citalopram attenuated the release of glutamate and D-serine by promoting the apoptosis of microglia. The present study aimed to test and compare antidepressants from three distinct classes (tricyclics, monoamine oxidase inhibitors, and SSRIs) on microglial apoptosis. Primary microglia were treated with 1 µg/mL lipopolysaccharide and/or 10 µM antidepressants, and various apoptotic markers were assayed. Fluoxetine and its metabolite norfluoxetine decreased protein levels in cell lysates, decreased cell viability of microglia, and increased the expression of the apoptotic marker cleaved-caspase 3 in microglia. Live/dead nuclear staining also showed that fluoxetine- or norfluoxetine-treated cultures contained greater numbers of dying microglial cells compared to vehicle-treated cultures. Cultures treated with citalopram, phenelzine, or imipramine showed no evidence of inducing microglial apoptosis. Our results demonstrate that fluoxetine and norfluoxetine induce the apoptotic death of microglia, which may serve as a mechanism to attenuate the release of glutamate and D-serine from activated microglia. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Asunto(s)
Apoptosis/efectos de los fármacos , Fluoxetina/farmacología , Microglía/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Antidepresivos de Segunda Generación/farmacología , Supervivencia Celular/efectos de los fármacos , Fluoxetina/análogos & derivados , Microglía/patología , Ratas , Ratas Sprague-DawleyRESUMEN
This work describes the development of a robust and repeatable in vitro 3D culture model of glial scarring, which may be used to evaluate the foreign body response to electrodes and other implants in the central nervous system. The model is based on methacrylated hyaluronic acid, a hydrogel that may be photopolymerized to form an insoluble network. Hydrogel scaffolds were formed at four different macromer concentrations (0.50, 0.75, 1.00, and 1.50% (w/v)). As expected, the elastic modulus of the scaffolds increased with increasing macromer weight fraction. Adult rat brain tested under identical conditions had an elastic modulus range that spanned the elastic modulus of both the 0.50 and 0.75% (w/v) hydrogel samples. Gels formed with higher macromer weight fraction had decreased equilibrium swelling ratio and visibly thicker pore walls relative to gels formed with lower macromer weight fractions. Mixed glial cells (microglia and astrocytes) were then encapsulated in the HA scaffolds. Viability of the mixed cultures was most stable at a cell density of 1 × 10(7) cells/mL. Cell viability at the highest macromer weight fraction tested (1.50% (w/v)) was significantly lower than other tested gels (0.50, 0.75 and 1.00% (w/v)). The inflammatory response of microglia and astrocytes to a microelectrode inserted into the scaffold was assessed over a period of 2 weeks and closely represented that reported in vivo. Microglia responded first to the electrode (increased cell density at the electrode, and activated morphology) followed by astrocytes (appeared to line the electrode in a manner similar to glial scarring). All together, these results demonstrate the potential of the 3D in vitro model system to assess glial scarring in a robust and repeatable manner.
Asunto(s)
Materiales Biocompatibles/química , Técnicas de Cultivo de Célula/métodos , Ácido Hialurónico/química , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Materiales Biocompatibles/farmacología , Electrodos/normas , Ácido Hialurónico/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/fisiología , Ratas , Ratas Sprague-DawleyRESUMEN
Neural interfacing devices interact with the central nervous system to alleviate functional deficits arising from disease or injury. This often entails the use of invasive microelectrode implants that elicit inflammatory responses from glial cells and leads to loss of device function. Previous work focused on improving implant biocompatibility by modifying electrode composition; here, we investigated the direct effects of electrical stimulation on glial cells at the electrode interface. A high-throughput in vitro system that assesses primary glial cell response to biphasic stimulation waveforms at 0 mA, 0.15 mA, and 1.5 mA was developed and optimized. Primary mixed glial cell cultures were generated from heterozygous CX3CR-1+/EGFP mice, electrically stimulated for 4 h/day over 3 days using 75 µm platinum-iridium microelectrodes, and biomarker immunofluorescence was measured. Electrodes were then imaged on a scanning electron microscope to assess sustained electrode damage. Fluorescence and electron microscopy analyses suggest varying degrees of localized responses for each biomarker assayed (Hoescht, EGFP, GFAP, and IL-1ß), a result that expands on comparable in vivo models. This system allows for the comparison of a breadth of electrical stimulation parameters, and opens another avenue through which neural interfacing device developers can improve biocompatibility and longevity of electrodes in tissue.
RESUMEN
Chondroitin sulfate proteoglycans (CSPGs), one of the major extracellular matrix components of the glial scar that surrounds central nervous system (CNS) injuries, are known to inhibit the regeneration of neurons. This study investigated whether pleiotrophin (PTN), a growth factor upregulated during early CNS development, can overcome the inhibition mediated by CSPGs and promote the neurite outgrowth of neurons in vitro. The data showed that a CSPG matrix inhibited the outgrowth of neurites in primary cortical neuron cultures compared to a control matrix. PTN elicited a dose-dependent increase in the neurite outgrowth even in the presence of the growth inhibitory CSPG matrix, with optimal growth at 15 ng mL-1 of PTN (114.8% of neuronal outgrowth relative to laminin control). The growth-promoting effect of PTN was blocked by inhibition of the receptor anaplastic lymphoma kinase (ALK) by alectinib in a dose-dependent manner. Neurite outgrowth in the presence of this CSPG matrix was induced by activation of the protein kinase B (AKT) pathway, a key downstream mediator of ALK activation. This study identified PTN as a dose-dependent regulator of neurite outgrowth in primary cortical neurons cultured in the presence of a CSPG matrix and identified ALK activation as a key driver of PTN-induced growth.
RESUMEN
The intestinal microbiota has been proposed to influence human mental health and cognition through the gut-brain axis. Individuals experiencing recurrent Clostridioides difficile infection (rCDI) frequently report depressive symptoms, which are improved after fecal microbiota transplantation (FMT); however, mechanisms underlying this association are poorly understood. Short-chain fatty acids and carboxylic acids (SCCA) produced by the intestinal microbiota cross the blood brain barrier and have been proposed to contribute to gut-brain communication. We hypothesized that changes in serum SCCA measured before and after successful FMT for rCDI influences the inflammatory response of microglia, the resident immune cells of the central nervous system. Serum SCCA were quantified using gas chromatography-mass spectroscopy from 38 patients who participated in a randomized trial comparing oral capsule-vs colonoscopy-delivered FMT for rCDI, and quality of life was assessed by SF-36 at baseline, 4, and 12 weeks after FMT treatment. Successful FMT was associated with improvements in mental and physical health, as well as significant changes in a number of circulating SCCA, including increased butyrate, 2-methylbutyrate, valerate, and isovalerate, and decreased 2-hydroxybutyrate. Primary cultured microglia were treated with SCCA and the response to a pro-inflammatory stimulus was measured. Treatment with a combination of SCCA based on the post-FMT serum profile, but not single SCCA species, resulted in significantly reduced inflammatory response including reduced cytokine release, reduced nitric oxide release, and accumulation of intracellular lipid droplets. This suggests that both levels and diversity of SCCA may be an important contributor to gut-brain communication.
RESUMEN
BACKGROUND: Lung hypoplasia and persistent pulmonary hypertension of the newborn limit survival in congenital diaphragmatic hernia (CDH). Unlike other diseases resulting in persistent pulmonary hypertension of the newborn, infants with CDH are refractory to inhaled nitric oxide (NO). Nitric oxide mediates pulmonary vasodilatation at birth in part via cyclic GMP production. Phosphodiesterase type 5 (PDE5) limits the effects of NO by inactivation of cyclic GMP. Because of the limited success in postnatal management of CDH, we hypothesized that antenatal PDE5 inhibition would attenuate pulmonary artery remodeling in experimental nitrofen-induced CDH. METHODS AND RESULTS: Nitrofen administered at embryonic day 9.5 to pregnant rats resulted in a 60% incidence of CDH in the offspring and recapitulated features seen in human CDH, including structural abnormalities (lung hypoplasia, decreased pulmonary vascular density, pulmonary artery remodeling, right ventricular hypertrophy), and functional abnormalities (decreased pulmonary artery relaxation in response to the NO donor 2-(N,N-diethylamino)-diazenolate-2-oxide). Antenatal sildenafil administered to the pregnant rat from embryonic day 11.5 to embryonic day 20.5 crossed the placenta, increased fetal lung cyclic GMP and decreased active PDE5 expression. Antenatal sildenafil improved lung structure, increased pulmonary vessel density, reduced right ventricular hypertrophy, and improved postnatal NO donor 2-(N,N-diethylamino)-diazenolate-2-oxide-induced pulmonary artery relaxation. This was associated with increased lung endothelial NO synthase and vascular endothelial growth factor protein expression. Antenatal sildenafil had no adverse effect on retinal structure/function and brain development. CONCLUSIONS: Antenatal sildenafil improves pathological features of persistent pulmonary hypertension of the newborn in experimental CDH and does not alter the development of other PDE5-expressing organs. Given the high mortality/morbidity of CDH, the potential benefit of prenatal PDE5 inhibition in improving the outcome for infants with CDH warrants further studies.
Asunto(s)
Hernia Diafragmática/complicaciones , Hernias Diafragmáticas Congénitas , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/prevención & control , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Piperazinas/uso terapéutico , Sulfonas/uso terapéutico , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Modelos Animales de Enfermedad , Femenino , Hernia Diafragmática/inducido químicamente , Hipertensión Pulmonar/fisiopatología , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/patología , Óxido Nítrico/metabolismo , Éteres Fenílicos/efectos adversos , Inhibidores de Fosfodiesterasa 5/farmacología , Piperazinas/farmacología , Embarazo , Arteria Pulmonar/fisiopatología , Purinas/farmacología , Purinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Citrato de Sildenafil , Sulfonas/farmacologíaRESUMEN
Neural interface devices interact with the central nervous system (CNS) to substitute for some sort of functional deficit and improve quality of life for persons with disabilities. Design of safe, biocompatible neural interface devices is a fast-emerging field of neuroscience research. Development of invasive implant materials designed to directly interface with brain or spinal cord tissue has focussed on mitigation of glial scar reactivity toward the implant itself, but little exists in the literature that directly documents the effects of electrical stimulation on glial cells. In this review, a survey of studies documenting such effects has been compiled and categorized based on the various types of stimulation paradigms used and their observed effects on glia. A hybrid neuroscience cell biology-engineering perspective is offered to highlight considerations that must be made in both disciplines in the development of a safe implant. To advance knowledge on how electrical stimulation affects glia, we also suggest experiments elucidating electrochemical reactions that may occur as a result of electrical stimulation and how such reactions may affect glia. Designing a biocompatible stimulation paradigm should be a forefront consideration in the development of a device with improved safety and longevity.
RESUMEN
Under normal conditions, dopamine (DA) clearance after release largely depends on uptake by the DA transporter (DAT). DAT expression/activity is reduced in some neuropsychiatric and neurological disorders. Our aim was to characterize the behavioral, neurochemical and electrophysiological effects of eliminating DAT in a novel knockout rat model we generated using CRISPR/Cas9. Consistent with existing DAT-KO models, our DAT-KO rats displayed increased locomotion, paradoxical calming by amphetamine, and reduced kinetics of DA clearance after stimulated release. Reduced DA kinetics were demonstrated using fast-scan cyclic voltammetry in brain slices containing the striatum or substantia nigra pars compacta (SNc) and in the dorsal striatum in vivo. Cocaine enhanced DA release in wild-type (WT) but not DAT-KO rats. Basal extracellular DA concentration measured with fast-scan controlled-adsorption voltammetry was higher in DAT-KO rats both in the striatum and SNc and was enhanced by L-DOPA (particularly after pharmacological block of monoamine oxidase), confirming that DA release after L-DOPA is not due to DAT reversal. The baseline firing frequency of SNc neurons was similar in both genotypes. However, D2 receptor-mediated inhibition of firing (by quinpirole or L-DOPA) was blunted in DAT-KO rats, while GABAB-mediated inhibition was preserved. We have also provided new data for the DAT-KO rat regarding the effects of slowing DA diffusion with dextran and blocking organic cation transporter 3 with corticosterone. Together, our results validate our DAT-KO rat and provide new insights into the mechanisms of chronic dysregulation of the DA system by addressing several unresolved issues in previous studies with other DAT-KO models.
Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Anfetamina/farmacología , Animales , Cuerpo Estriado/metabolismo , Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Levodopa/farmacología , RatasRESUMEN
Calnexin is a molecular chaperone and a component of the quality control of the secretory pathway. We have generated calnexin gene-deficient mice (cnx(-/-)) and showed that calnexin deficiency leads to myelinopathy. Calnexin-deficient mice were viable with no discernible effects on other systems, including immune function, and instead they demonstrated dysmyelination as documented by reduced conductive velocity of nerve fibers and electron microscopy analysis of sciatic nerve and spinal cord. Myelin of the peripheral and central nervous systems of cnx(-/-) mice was disorganized and decompacted. There were no abnormalities in neuronal growth, no loss of neuronal fibers, and no change in fictive locomotor pattern in the absence of calnexin. This work reveals a previously unrecognized and important function of calnexin in myelination and provides new insights into the mechanisms responsible for myelin diseases.
Asunto(s)
Calnexina/genética , Calnexina/fisiología , Enfermedades Desmielinizantes/metabolismo , Vaina de Mielina/metabolismo , Animales , Animales Recién Nacidos , Calnexina/metabolismo , Membrana Celular/metabolismo , Electrofisiología/métodos , Retículo Endoplásmico/metabolismo , Femenino , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pliegue de Proteína , Nervio Ciático/metabolismo , Nervio Ciático/ultraestructura , Médula Espinal/metabolismo , Médula Espinal/ultraestructuraRESUMEN
Microglia are the primary cells in the central nervous system that identify and respond to injury or damage. Such a perturbation in the nervous system induces the release of molecules including ATP and glutamate that act as damage-associated molecular patterns (DAMPs). DAMPs are detected by microglia, which then regulate the inflammatory response in a manner sensitive to their surrounding environment. The available data indicates that ATP and glutamate can induce the release of pro inflammatory factors TNF (tumor necrosis factor), IL-1ß (interleukin 1 beta), and NO (nitric oxide) from microglia. However, non-physiological concentrations of ATP and glutamate were often used to derive these insights. Here, we have compared the response of spinal cord microglia (SM) relative to brain microglia (BM) using physiologically relevant concentrations of glutamate and ATP that mimic injured conditions in the central nervous system. The data show that ATP and glutamate are not significant modulators of the release of cytokines from either BM or SM. Consistent with previous studies, spinal microglia exhibited a general trend toward reduced release of inflammatory cytokines relative to brain-derived microglia. Moreover, we demonstrate that the responses of microglia to these DAMPs can be altered by modifying the biochemical milieu in their surrounding environment. Preconditioning brain derived microglia with media from spinal cord derived mixed glial cultures shifted their release of IL-1ß and IL-6 to a less inflammatory phenotype consistent with spinal microglia.
RESUMEN
Many investigations on mild traumatic brain injury (mTBI) aim to further understand how cells in the brain react to the mechanical forces associated with the injury. While it is known that rapid head rotation is a mechanism contributing to mTBI, establishing definitive thresholds for head rotation has proved challenging. One way to advance determining mechanisms and thresholds for injury is through in vitro models. Here, an apparatus has been designed that is capable of delivering rotational forces to three-dimensional (3D) hydrogel cell cultures. Using an in vitro model, we test the hypothesis that rotational kinematics can activate microglia suspended in a 3-dimensional mixed glia environment (absent neurons). The impact apparatus was able to deliver peak angular velocities of approximately 45 rad/s, a magnitude for angular velocity that in select literature is associated with diffuse brain injury. However, no measurable glial cell reactivity was observed in response to the rotational kinematics through any of the chosen metrics (nitric oxide, pro-inflammatory cytokine release and proportion of amoeboid activated microglia). The results generated from this study suggest that rotation of the glia alone did not cause activation - in future work we will investigate the effect of neuronal contributions in activating glia.
Asunto(s)
Conmoción Encefálica , Fenómenos Biomecánicos , Técnicas de Cultivo de Célula , Humanos , Hidrogeles , MicroglíaRESUMEN
Reactive aldehydes have been implicated in the etiology of several neurological and psychiatric disorders, and there is considerable interest in drugs to counteract the actions of these aldehydes. Increased formaldehyde (FA) and up-regulation of semicarbazide-sensitive amine oxidase, which forms FA from methylamine, have been implicated in disorders such as cerebrovascular disorders, alcohol abuse, diabetes and Alzheimer's disease. Phenelzine (PLZ), a monoamine oxidase inhibitor, is an antidepressant that has recently received attention for its neuroprotective/neurorescue properties. We investigated FA-induced toxicity and the effects of PLZ using rat primary cortical neurons and astrocytes and found that FA induced toxicity in neurons and astrocytes by multiple means. In astrocytes, FA decreased glutamate transporter expression, inhibiting glutamate uptake. PLZ reversed the decrease of glutamate uptake and the alteration of the second messengers, AKT and p38, induced by FA. PLZ alone affected the GLT-1 glutamate transporter in opposite directions in astrocytes and neurons. Thus, PLZ has multiple actions in neurons and astrocytes that may contribute to its neuroprotection.
Asunto(s)
Antidepresivos/farmacología , Astrocitos/efectos de los fármacos , Formaldehído/toxicidad , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fenelzina/farmacología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Células Cultivadas , Femenino , Formaldehído/antagonistas & inhibidores , Neuronas/metabolismo , Neuronas/patología , Embarazo , Ratas , Ratas Sprague-DawleyRESUMEN
BACKGROUND: Neonatal hypoxia-ischemia (HI) is a major cause of perinatal brain injury and is associated with a spectrum of neuropsychiatric disorders. Although very few treatment options are currently available, doxycycline (DOXY) has been reported to be neuroprotective in neontatal HI. Our objective was to investigate the effects of DOXY on neonatal brain development in normal and HI rat pups. We hypothesized that DOXY would inhibit microglial activation but that developmentally important processes, including cytogenesis and trophic responses, would not be impaired. METHODS: To investigate the putative neurodevelopmental consequences of DOXY administration in a clinically relevant animal model of HI, we performed a time-course analysis such that postnatal rat pups received DOXY (10mg/kg) or vehicle immediately before HI (n >or= 6). We then assessed cytogenesis, proinflammatory cytokines, brain-derived neurotrophic factor (BDNF) and matrix metalloproteinases regionally and longitudinally. RESULTS: We found that DOXY significantly inhibits neuroinflammation in the frontal cortex, striatum and hippocampus; decreases interleukin-1Beta (IL-1Beta) and tumour necrosis factor-alpha (TNF-alpha); and augments BDNF following HI. In addition, DOXY-treated pups have significantly fewer 2-bromo-5-deoxyuridine (BrdU)-positive cells in the subventricular zone 6 hours post-HI. However, DOXY does not persistently affect cytogenesis in the subventricular zone or dentate gyrus up to 7 days post-HI. The BrdU-positive cells not expressing markers for mature neurons colabel with nestin, an intermediate filament protein typical of neuronal precursors. LIMITATIONS: Our study investigates "acute" neurodevelopment over the first 7 days of life after HI injury. Further long-term investigations into adulthood are underway. CONCLUSION: Taken together, our results suggest the putative clinical potential of DOXY in the management of neonatal cerebral HI injury.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Citocinas/antagonistas & inhibidores , Doxiciclina/farmacología , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/fisiopatología , Fármacos Neuroprotectores/farmacología , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/metabolismo , Estudios Longitudinales , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neuroinmunomodulación/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Value-based healthcare (VBHC) can be interpreted in many ways depending on one's jurisdiction. Often it is used synonymously with cost-effectiveness. In Alberta, VBHC might more appropriately be termed "values-based healthcare." This reflects our belief that a healthcare system should meet the needs and desires of its population and contribute to overall wellness. We therefore developed a framework based on the dimensions of quality, the Quadruple Aim and feasibility considerations, which enables us to assess and measure our system activities and initiatives to determine if they are in keeping with VBHC in the Alberta context.