Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(11): 2166-2197, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600242

RESUMEN

The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.


Asunto(s)
Proteína A Centromérica , Inestabilidad Cromosómica , Histonas , Humanos , Proteína A Centromérica/metabolismo , Proteína A Centromérica/genética , Histonas/metabolismo , Histonas/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Células HeLa , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Centrómero/metabolismo
2.
Chem Biodivers ; 20(5): e202300151, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37067830

RESUMEN

Eumycetoma, the fungal form of the neglected tropical disease mycetoma, is a crippling infectious disease with low response rates to currently available antifungal drugs. In this study, a series of natural naphthoquinones and anthraquinones was evaluated for their activity against Madurella mycetomatis, which is the most common causative agent of eumycetoma. The metabolic activity of Madurella mycetomatis as well as the viability of Galleria mellonella larvae upon treatment with quinones was investigated. Several hydroxy-substituted naphthoquinones exhibited activity against Madurella mycetomatis. In particular, naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) was identified as a considerably active antifungal compound against Madurella mycetomatis (IC50 =1.4 µM), while it showed reduced toxicity to Galleria mellonella larvae, which is a well-established in vivo invertebrate model for mycetoma drug studies.


Asunto(s)
Escarabajos , Madurella , Mariposas Nocturnas , Micetoma , Naftoquinonas , Animales , Antifúngicos/farmacología , Micetoma/tratamiento farmacológico , Micetoma/microbiología , Antraquinonas/farmacología , Larva , Naftoquinonas/farmacología
3.
Molecules ; 28(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005358

RESUMEN

This review summarizes achievements in the synthesis of 1,2-disubstituted adamantane derivatives by the construction of the tricyclic framework either by total synthesis or by ring expansion/contraction reactions of corresponding adamantane homologues. It is intended to complement reviews focusing on the preparation of 1,2-disubstituted derivatives by C-H functionalization methods.

4.
Chem Soc Rev ; 50(16): 9121-9151, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34212944

RESUMEN

COVID-19 has resulted in huge numbers of infections and deaths worldwide and brought the most severe disruptions to societies and economies since the Great Depression. Massive experimental and computational research effort to understand and characterize the disease and rapidly develop diagnostics, vaccines, and drugs has emerged in response to this devastating pandemic and more than 130 000 COVID-19-related research papers have been published in peer-reviewed journals or deposited in preprint servers. Much of the research effort has focused on the discovery of novel drug candidates or repurposing of existing drugs against COVID-19, and many such projects have been either exclusively computational or computer-aided experimental studies. Herein, we provide an expert overview of the key computational methods and their applications for the discovery of COVID-19 small-molecule therapeutics that have been reported in the research literature. We further outline that, after the first year the COVID-19 pandemic, it appears that drug repurposing has not produced rapid and global solutions. However, several known drugs have been used in the clinic to cure COVID-19 patients, and a few repurposed drugs continue to be considered in clinical trials, along with several novel clinical candidates. We posit that truly impactful computational tools must deliver actionable, experimentally testable hypotheses enabling the discovery of novel drugs and drug combinations, and that open science and rapid sharing of research results are critical to accelerate the development of novel, much needed therapeutics for COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Simulación por Computador , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos , Antivirales/uso terapéutico , COVID-19/virología , Ensayos Clínicos como Asunto , Humanos , Pandemias , SARS-CoV-2/efectos de los fármacos
5.
J Org Chem ; 85(21): 13438-13452, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32786609

RESUMEN

We have discovered and studied a tele-substitution reaction in a biologically important heterocyclic ring system. Conditions that favor the tele-substitution pathway were identified: the use of increased equivalents of the nucleophile or decreased equivalents of base or the use of softer nucleophiles, less polar solvents, and larger halogens on the electrophile. Using results from X-ray crystallographic and isotope labeling experiments, a mechanism for this unusual transformation is proposed. We focused on this triazolopyrazine as it is the core structure of the in vivo active antiplasmodium compounds of Series 4 of the Open Source Malaria consortium.


Asunto(s)
Antimaláricos , Antimaláricos/farmacología , Halógenos , Pirazinas , Solventes
6.
Malar J ; 18(1): 93, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902052

RESUMEN

Great progress has been made in recent years to reduce the high level of suffering caused by malaria worldwide. Notably, the use of insecticide-treated mosquito nets for malaria prevention and the use of artemisinin-based combination therapy (ACT) for malaria treatment have made a significant impact. Nevertheless, the development of resistance to the past and present anti-malarial drugs highlights the need for continued research to stay one step ahead. New drugs are needed, particularly those with new mechanisms of action. Here the range of anti-malarial medicines developed over the years are reviewed, beginning with the discovery of quinine in the early 1800s, through to modern day ACT and the recently-approved tafenoquine. A number of new potential anti-malarial drugs currently in development are outlined, along with a description of the hit to lead campaign from which it originated. Finally, promising novel mechanisms of action for these and future anti-malarial medicines are outlined.


Asunto(s)
Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Humanos
7.
J Biol Chem ; 292(43): 17963-17974, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-28860188

RESUMEN

Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets.


Asunto(s)
Precursores Enzimáticos/antagonistas & inhibidores , Precursores Enzimáticos/química , Metaloproteinasa 9 de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz/química , Regulación Alostérica , Animales , Células COS , Dominio Catalítico , Chlorocebus aethiops , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Dominios Proteicos
8.
Chemistry ; 24(7): 1573-1585, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29052259

RESUMEN

Molecular switches have many potential applications in nanoscience and biomedicine. Transition metal complexes that can be switched from an inert, unreactive state to a catalytically active one by a simple change in conditions (e.g. pH shift) or by binding to a specific biomolecular target-so-called target-activated metal complexes (TAMCs)-hold particular allure as a means of harnessing the potent but at times indiscriminate reactivity of metal-based drugs. Towards this goal, we have prepared a series of ten structurally related ligands, each of which bears a different pendant side-arm functional group appended to a common macrocyclic core, along with copper(II) and nickel(II) complexes of these cyclam-based "molecular scorpionands". X-ray crystal structures reveal a variety of binding modes between pendant side-arm and metal centre that depend on the constituent donor atoms. To investigate the switchability of side-arm coordination in solution, spectrophotometric pH titrations were carried out for all 20 metal complexes. The majority of the complexes undergo spectroscopic changes that are consistent with a switch in pendant coordination state at a specific pH. This ligand series represents a comprehensive model platform from which to build pH-switchable metal complexes for applications in nanoscience and biomedicine.

9.
Magn Reson Chem ; 56(6): 520-528, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28981966

RESUMEN

NMR is a mature technique that is well established and adopted in a wide range of research facilities from laboratories to hospitals. This accounts for large amounts of valuable experimental data that may be readily exported into a standard and open format. Yet the publication of these data faces an important issue: Raw data are not made available; instead, the information is slimed down into a string of characters (the list of peaks). Although historical limitations of technology explain this practice, it is not acceptable in the era of Internet. The idea of modernizing the strategy for sharing NMR data is not new, and some repositories exist, but sharing raw data is still not an established practice. Here, we present a powerful toolbox built on recent technologies that runs inside the browser and provides a means to store, share, analyse, and interact with original NMR data. Stored spectra can be streamlined into the publication pipeline, to improve the revision process for instance. The set of tools is still basic but is intended to be extended. The project is open source under the Massachusetts Institute of Technology (MIT) licence.

10.
J Environ Sci Health B ; 53(2): 145-151, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29131711

RESUMEN

Aerobic treatment of swine manure was coupled with anaerobic digestion and microalgal cultivation. A 14-day aerobic treatment reduced the total solid content of swine manure by >15%. Ammonia and carbon dioxide were stripped by the air supplied, and this off-gas was further used to aerate the culture of Chlorella vulgaris. The microalgal growth rates in Bristol medium and the wastewater with the off-gas increased from 0.08 to 0.22 g/L/d and from 0.15 to 0.24 g/L/d, respectively. Meanwhile, the aerobically treated swine manure showed a higher methane yield during anaerobic digestion. The experimental results were used to establish a demonstration unit consisting of a 100 L composter, a 200 L anaerobic digester, a 60 L tubular photobioreactor, and a 300 L micro-open raceway pond.


Asunto(s)
Chlorella vulgaris/crecimiento & desarrollo , Estiércol , Metano/biosíntesis , Microalgas/crecimiento & desarrollo , Administración de Residuos/métodos , Aerobiosis , Amoníaco/metabolismo , Animales , Dióxido de Carbono/metabolismo , Compostaje , Fotobiorreactores , Porcinos , Administración de Residuos/instrumentación , Aguas Residuales
12.
Chemistry ; 23(39): 9313-9318, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28523850

RESUMEN

The mechanism of cross-dehydrogenative coupling (CDC) reactions has been examined by experimental and computational methods. We provide a rationale for the ubiquity of the N-aryl group in these reactions. The aryl substituent stabilizes two intermediates and the high-energy transition state that connects them, which together represent the rate-determining step. This knowledge has enabled us to predict whether new CDC substrates will react either well or poorly.

13.
Molecules ; 22(2)2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28125069

RESUMEN

Small-molecule fluorescent probes play a myriad of important roles in chemical sensing. Many such systems incorporating a receptor component designed to recognise and bind a specific analyte, and a reporter or transducer component which signals the binding event with a change in fluorescence output have been developed. Fluorescent probes use a variety of mechanisms to transmit the binding event to the reporter unit, including photoinduced electron transfer (PET), charge transfer (CT), Förster resonance energy transfer (FRET), excimer formation, and aggregation induced emission (AIE) or aggregation caused quenching (ACQ). These systems respond to a wide array of potential analytes including protons, metal cations, anions, carbohydrates, and other biomolecules. This review surveys important new fluorescence-based probes for these and other analytes that have been reported over the past five years, focusing on the most widely exploited macrocyclic recognition components, those based on cyclam, calixarenes, cyclodextrins and crown ethers; other macrocyclic and non-macrocyclic receptors are also discussed.


Asunto(s)
Técnicas Biosensibles , Colorantes Fluorescentes/química , Iones/química , Compuestos Macrocíclicos/química , Éteres Corona/química , Ciclodextrinas/química , Compuestos Heterocíclicos/química , Puntos Cuánticos
14.
Beilstein J Org Chem ; 12: 2457-2461, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28144313

RESUMEN

An efficient protocol for the direct synthesis of N-tetraalkylated derivatives of the azamacrocycles cyclam and cyclen has been developed, using a partially miscible aqueous-organic solvent system with propargyl bromide, benzyl bromide, and related halides. The method works most effectively when the reaction mixture is shaken, not stirred. A crystal structure of the N-tetrapropargyl cyclam derivative 1,4,8,11-tetra(prop-2-yn-1-yl)-1,4,8,11-tetraazacyclotetradecane diperchlorate is reported.

15.
J Enzyme Inhib Med Chem ; 30(2): 204-11, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24758348

RESUMEN

Human carbonic anhydrase (CA) I and II are cytosolic proteins, where their expression disorders can cause diseases such as glaucoma, edema, epilepsy or cancer. There are numerous inhibitors that target these isozymes, but it is difficult to design compounds that could bind to one of these proteins specifically. The binding of sulfonamide inhibitor to a CA is linked to several protonation reactions, namely, deprotonation of the sulfonamide group, protonation of the active site zinc hydroxide and the compensating protonation-deprotonation of buffer. By performing binding experiments at various pHs and buffers, all those contributions were dissected and the "intrinsic" binding parameters were calculated. Intrinsic thermodynamic binding parameters to CA I and II were determined for such widely studied drugs as acetazolamide, ethoxzolamide, methazolamide, trifluoromethanesulfonamide and dichlorophenamide. The assignment of all contributions should enhance our understanding of the underlying energetics and increase our capability to design more potent and specific CA inhibitors.


Asunto(s)
Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica I/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/síntesis química , Sulfonamidas/síntesis química , Anhidrasa Carbónica I/aislamiento & purificación , Anhidrasa Carbónica II/aislamiento & purificación , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Eritrocitos/enzimología , Humanos , Estructura Molecular , Unión Proteica , Protones , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología , Termodinámica
16.
Beilstein J Org Chem ; 11: 37-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25670990

RESUMEN

The effective and efficient removal of the BF2 moiety from F-BODIPY derivatives has been achieved using two common Brønsted acids; treatment with trifluoroacetic acid (TFA) or methanolic hydrogen chloride (HCl) followed by work-up with Ambersep(®) 900 resin (hydroxide form) effects this conversion in near-quantitative yields. Compared to existing methods, these conditions are relatively mild and operationally simple, requiring only reaction at room temperature for six hours (TFA) or overnight (HCl).

17.
Antimicrob Agents Chemother ; 58(9): 5466-72, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24982093

RESUMEN

A racemic mixture of R and S enantiomers of praziquantel (PZQ) is currently the treatment of choice for schistosomiasis. Though the S enantiomer and the metabolites are presumed to contribute only a little to the activity of the drug, in-depth side-by-side studies are lacking. The aim of this study was to investigate the in vitro activities of PZQ and its main metabolites, namely, R- and S-cis- and R- and S-trans-4'-hydroxypraziquantel, against adult worms and newly transformed schistosomula (NTS). Additionally, we explored the in vivo activity and hepatic shift (i.e., the migration of the worms to the liver) produced by each PZQ enantiomer in mice. Fifty percent inhibitory concentrations of R-PZQ, S-PZQ, and R-trans- and R-cis-4'-hydroxypraziquantel of 0.02, 5.85, 4.08, and 2.42 µg/ml, respectively, for adult S. mansoni were determined in vitro. S-trans- and S-cis-4'-hydroxypraziquantel were not active at 100 µg/ml. These results are consistent with microcalorimetry data and studies with NTS. In vivo, single 400-mg/kg oral doses of R-PZQ and S-PZQ achieved worm burden reductions of 100 and 19%, respectively. Moreover, worms treated in vivo with S-PZQ displayed an only transient hepatic shift and returned to the mesenteric veins within 24 h. Our data confirm that R-PZQ is the main effector molecule, while S-PZQ and the metabolites do not play a significant role in the antischistosomal properties of PZQ.


Asunto(s)
Praziquantel/farmacología , Schistosoma mansoni/efectos de los fármacos , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomicidas/farmacología , Animales , Hígado/parasitología , Ratones
18.
Parasitology ; 141(1): 148-57, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23985301

RESUMEN

Open science is a new concept for the practice of experimental laboratory-based research, such as drug discovery. The authors have recently gained experience in how to run such projects and here describe some straightforward steps others may wish to take towards more openness in their own research programmes. Existing and inexpensive online tools can solve many challenges, while some psychological barriers to the free sharing of all data and ideas are more substantial.


Asunto(s)
Revelación/ética , Descubrimiento de Drogas , Difusión de la Información/métodos , Programas Informáticos , Antihelmínticos/síntesis química , Antihelmínticos/farmacología , Antimaláricos/síntesis química , Antimaláricos/farmacología , Humanos , Difusión de la Información/ética , Internet , Malaria/tratamiento farmacológico , Malaria/parasitología , Esquistosomiasis/tratamiento farmacológico , Esquistosomiasis/parasitología
19.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297033

RESUMEN

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Asunto(s)
Antimaláricos , Aspartato-ARNt Ligasa , Animales , Humanos , Plasmodium falciparum/genética , Asparagina/metabolismo , Aspartato-ARNt Ligasa/genética , Aminoacil-ARN de Transferencia/metabolismo , Antimaláricos/farmacología , Mamíferos/genética
20.
Biochem Biophys Res Commun ; 436(3): 530-535, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23770359

RESUMEN

Fibromodulin (FMOD) is an extracellular matrix (ECM) small leucine-rich proteoglycan (SLRP) that plays an important role in cell fate determination. Previous studies revealed that not only is FMOD critical in fetal-type scarless wound healing, but it also promotes adult wound closure and reduces scar formation. In addition, FMOD-deficient mice exhibit significantly reduced blood vessel regeneration in granulation tissues during wound healing. In this study, we investigated the effects of FMOD on angiogenesis, which is an important event in wound healing as well as embryonic development and tumorigenesis. We found that FMOD accelerated human umbilical vein endothelial HUVEC-CS cell adhesion, spreading, actin stress fiber formation, and eventually tube-like structure (TLS) network establishment in vitro. On a molecular level, by increasing expression of collagen I and III, angiopoietin (Ang)-2, and vascular endothelial growth factor (VEGF), as well as reducing the ratio of Ang-1/Ang-2, FMOD provided a favorable network to mobilize quiescent endothelial cells to an angiogenic phenotype. Moreover, we also confirmed that FMOD enhanced angiogenesis in vivo by using an in ovo chick embryo chorioallantoic membrane (CAM) assay. Therefore, our data demonstrate that FMOD is a pro-angiogenic and suggest a potential therapeutic role of FMOD in the treatment of conditions related to impaired angiogenesis.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Proteínas de la Matriz Extracelular/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Proteoglicanos/farmacología , Angiopoyetina 2/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular , Embrión de Pollo , Membrana Corioalantoides/efectos de los fármacos , Colágeno Tipo III/metabolismo , Relación Dosis-Respuesta a Droga , Fibromodulina , Células Endoteliales de la Vena Umbilical Humana , Humanos , Fibras de Estrés/metabolismo , Vinculina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA