Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Pharm Res ; 41(4): 819-831, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443630

RESUMEN

PURPOSE: Hollow-type microneedles (hMNs) are a promising device for the effective administration of drugs into intradermal sites. Complete insertion of the needle into the skin and administration of the drug solution without leakage must be achieved to obtain bioavailability or a constant effect. In the present study, several types of hMN with or without a rounded blunt tip micropillar, which suppresses skin deformation, around a hollow needle, and the effect on successful needle insertion and administration of a drug solution was investigated. Six different types of hMNs with needle lengths of 1000, 1300, and 1500 µm with or without a micropillar were used. METHODS: Needle insertion and the disposition of a drug in rat skin were investigated. In addition, the displacement-force profile during application of hMNs was also investigated using a texture analyzer with an artificial membrane to examine needle factors affecting successful insertion and administration of a drug solution by comparing with in vivo results. RESULTS: According to the results with the drug distribution of iodine, hMN1300 with a micropillar was able to successfully inject drug solution into an intradermal site with a high success rate. In addition, the results of displacement-force profiles with an artificial membrane showed that a micropillar can be effective for depth control of the injected solution as well as the prevention of contact between the hMN pedestal and the deformed membrane. CONCLUSION: In the present study, hMN1300S showed effective solution delivery into an intradermal site. In particular, a micropillar can be effective for depth control of the injected solution as well as preventing contact between the hMN pedestal and the deformed membrane. The obtained results will help in the design and development of hMNs that ensure successful injection of an administered drug.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Ratas , Animales , Microinyecciones , Inyecciones Intradérmicas , Sistemas de Liberación de Medicamentos/métodos , Agujas , Membranas Artificiales , Administración Cutánea
2.
J Nanobiotechnology ; 22(1): 114, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493106

RESUMEN

BACKGROUND: Rice bran a by-product of the rice milling process is currently underutilized. Recent studies have shown that plant-derived nanoparticles (pdNPs) can be mass-produced at a low cost and exhibit biological and therapeutic activities. Rice bran contains various anti-cancer compounds, including γ-oryzanol and γ-tocotrienol, and rice bran-derived nanoparticles (rbNPs) can be employed as novel therapeutic agents for cancer treatment. RESULTS: Koshihikari rice bran was suspended in water, and the suspension was centrifuged and filtered through a 0.45-µm-pore size syringe filter. The filtrate was ultracentrifuged, and the precipitates were suspended to obtain rbNPs. The rbNPs were negatively charged exosome-like nanoparticles with an average diameter of approximately 130 nm. The rbNPs exhibited cytotoxic activities against cancer cells but not against normal cells. The cytotoxic activity of rbNPs to murine colon adenocarcinoma colon26 cells was significantly greater than DOXIL® or other pdNPs. The rbNPs induced cell cycle arrest and apoptosis, and reduced the expression of proliferative proteins, including ß-catenin and cyclin D1. Intraperitoneal injections of rbNPs into mice bearing peritoneal dissemination of colon26 cells significantly suppressed tumor growth with no significant adverse effects. CONCLUSION: These results indicated that rbNPs are promising nanoparticles, hold significant potential for anti-cancer applications, and are expected to play a vital role in cancer treatment.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias del Colon , Oryza , Animales , Ratones , Neoplasias del Colon/tratamiento farmacológico , Antioxidantes/farmacología , Antineoplásicos/farmacología
3.
Chem Pharm Bull (Tokyo) ; 72(3): 319-323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38508724

RESUMEN

Auraptene (Aur) is a naturally occurring monoterpene coumarin ether that exhibits numerous therapeutic properties. Its high lipophilicity and low skin penetration, however, limit its potential application for local and transdermal delivery. Biocompatible non-ionic sugar esters (SEs) possess beneficial properties for the development of transdermal formulations in delivering pharmaceutically challenging molecules such as graphene and Aur. In the present study, we conducted a series of experiments to demonstrate the effect of several previously unstudied SEs on the skin permeation and distribution of Aur by preparing gel- and dispersion-type formulations. Skin permeation and deposition experiments were conducted using a Franz diffusion cell with rat skin as the membrane. The dispersion-type formulations prepared using SEs had higher entrapment efficiency, as well as better skin permeation and retention profiles. The dispersion-type formulation containing sucrose palmitate (sSP) exhibited the highest skin permeation over 8 h. Notably, the enhancement effects on Aur concentration in full-thickness skin after the application of the dispersion-type formulation was higher than those of the control formulation. These results indicated that the prepared formulation has potential for use in the transdermal delivery of Aur in pharmaceutical and cosmetic products.


Asunto(s)
Absorción Cutánea , Tensoactivos , Ratas , Animales , Azúcares , Ésteres , Administración Cutánea , Cumarinas
4.
Drug Dev Ind Pharm ; 50(7): 628-638, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39030701

RESUMEN

OBJECTIVE: This study was to prepare solid dispersions of lidocaine (Lid) with 5-sulfosalicylic acid dihydrate (SSA) by freeze-drying (freeze-dried [FD] Lid/SSA = 1/1) and to evaluate their physical properties. METHODS: Here, we evaluated the physicochemical properties and solubility of solid dispersions of Lid and SSA prepared by freeze-drying (freeze-dried [FD] Lid/SSA = 1/1). RESULTS: Differential scanning calorimetry measurements showed that after freeze-drying, the endothermic peak due to Lid melting, the dehydration peak, and the endothermic peak due to SSA melting disappeared. Powder X-ray diffraction results showed that the characteristic Lid and SSA peaks disappeared after freeze-drying, indicating a halo pattern. The near-infrared spectroscopy results suggested that Lid-derived -NH and -CH groups and the Lid-derived -OH and -CH groups from the SSA peak shifted and broadened after freeze-drying, suggesting their involvement in complex formation through Lid/SSA intermolecular interactions. Nuclear Overhauser effect spectroscopy-nuclear magnetic resonance (NMR) measurements showed a cross-peak due to the interaction between the Lid-derived -CH group and the SSA-derived -OH group, suggesting hydrogen bonding. Diffusion-ordered spectroscopy NMR measurements showed that the diffusion coefficients of Lid and SSA aggregated in FD Lid/SSA, suggesting a change in Lid dispersibility in the solvent owing to the formation of a complex with SSA. The solubility of FD Lid/SSA was approximately 88 mg/mL (∼20-fold higher than that of Lid). CONCLUSIONS: These findings suggest that complex formation occurred in FD Lid/SSA; this enhanced the solubility of this dispersion.


Asunto(s)
Rastreo Diferencial de Calorimetría , Liofilización , Lidocaína , Salicilatos , Solubilidad , Lidocaína/química , Salicilatos/química , Difracción de Rayos X/métodos , Química Farmacéutica/métodos , Espectroscopía de Resonancia Magnética/métodos , Bencenosulfonatos
5.
Pharm Res ; 40(8): 1953-1963, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37165148

RESUMEN

PURPOSE: Hollow microneedles (hMNs) have been gaining attention as a tool to enable the intradermal (i.d.) administration of pharmaceutical products. However, few reports have examined the effect of administration volume on distribution in the skin and pharmacokinetics parameters after i.d. injection. In the present study, a model middle molecular weight compound, fluorescein isothiocyanate dextran (M.W. 4,000, FD-4), was selected, and blood concentration-time profiles after i.d. and subcutaneous (s.c.) injections with different administration volumes were compared. METHODS: FD-4 solution was injected i.d. using a hMN or injected s.c. with a 27 G needle. Pharmacokinetics and dermatokinetics of FD-4 were analyzed using a compartment model. The skin distribution of iodine, as an X ray tracer, was used to evaluate drug disposition. RESULTS: With the administered drug assumed to be absorbed from the broad injection site into blood vessels in the upper and lower dermis by rapid (krapid) and slow (kslow) first-order absorption rate constants, respectively, better agreement of observed and theoretical values was obtained. Furthermore, the fraction, F, of the administered dose absorbed with krapid decreased with the increase in injection volume after i.d. injection, although the pharmacokinetics parameters were almost the same regardless of administration volume after s.c. injection. CONCLUSION: The drug distribution in the skin may be related to the obtained pharmacokinetics parameters suggested that the number of needles in the MN system and the total administration volume should be considered in designing hMN systems. The present results provide useful information that may support effective drug delivery with hMNs.


Asunto(s)
Agujas , Piel , Inyecciones Intradérmicas , Piel/metabolismo , Absorción Cutánea , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas/metabolismo , Administración Cutánea , Microinyecciones/métodos
6.
Pharm Res ; 40(6): 1577-1586, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37081304

RESUMEN

PURPOSE: Laurocapram (Azone) was broadly examined as a representative enhancer of skin penetration in the 1980s. However, it was not approved for treatment because it caused skin irritation following its penetration into the epidermis through the stratum corneum. In the present study, a so-called ante-enhancer with an Azone-mimic structure was designed based on an ante-drug with negligible systemic toxic effects following its permeation through the skin. METHODS: The ante-enhancer was designed using ionic liquid technology: an ionic liquid-type ante-enhancer (IL-Azone) with an Azone-mimic structure was prepared from ε-caprolactam and myristic acid as cationic and anionic substances, respectively. The enhancing effects of IL-Azone on the permeation by the following model drugs through pig skin were examined: isosorbide 5-mononitrate (ISMN), antipyrine (ANP), and fluorescein isothiocyanate dextran (FD-4). Skin irritation by IL-Azone was assessed using the Draize method. RESULTS: The primary irritation index (P.I.I.) of IL-Azone by the Draize method was markedly lower than that of Azone (6.9). Although the ability of IL-Azone to enhance skin penetration was not as high as Azone, IL-Azone moderately increased skin permeation by the model compounds tested (ISMN: 4.7 fold, ANP: 4.5 fold, FD-4: 4.0 fold). CONCLUSIONS: These results suggest the usefulness of designing a skin penetration enhancer using ionic liquid technology. Further trials on the ionic liquid design with an Azone-mimic structure using other cations and anions may lead to the development of better ante-enhancers.


Asunto(s)
Líquidos Iónicos , Absorción Cutánea , Animales , Porcinos , Piel/metabolismo , Azepinas/metabolismo , Azepinas/farmacología , Administración Cutánea
7.
Chem Pharm Bull (Tokyo) ; 71(6): 386-397, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258191

RESUMEN

Various stresses and strains are generated on the surface and inside of pharmaceutical tablets when an external force is applied. In addition, stresses in various directions can remain on the surface and inside the tablets because they are generally prepared by compaction of pharmaceutical powders using dies and punches. As it is difficult to measure the stress and strain generation in the tablets experimentally, a numerical simulation was applied by employing a finite element method (FEM). An elastic model is often used to represent stress and strain generation after loading an external force to tablets, and the Drucker-Prager cap (DPC) model has been widely recognized for representing the remaining stress distributions during the compaction of powder to tablet form. Firstly, this article describes an FEM simulation of the stress generation on the surface of the scored tablets after loading the bending force from the back side of the tablets. Next, the FEM simulation was introduced to determine the effect of diametrical compression on the stress and strain generation in the tablets by comparing the results measured experimentally. Furthermore, the residual stresses remaining inside the tablets were simulated using FEM, in which powder compaction was represented as the DPC model. A clear difference was observed in the residual stress distributions between the flat and convex tablets. This indicates that FEM simulation is useful for achieving a science-based understanding of critical quality attributes in various types of tablets.


Asunto(s)
Tecnología Farmacéutica , Tecnología Farmacéutica/métodos , Polvos , Análisis de Elementos Finitos , Simulación por Computador , Comprimidos
8.
Cancer Sci ; 113(5): 1779-1788, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35253340

RESUMEN

Intraperitoneal administration of anticancer nanoparticles is a rational strategy for preventing peritoneal dissemination of colon cancer due to the prolonged retention of nanoparticles in the abdominal cavity. However, instability of nanoparticles in body fluids causes inefficient retention, reducing its anticancer effects. We have previously developed anticancer nanoparticles containing tocopheryl succinate, which showed high in vivo stability and multifunctional anticancer effects. In the present study, we have demonstrated that peritoneal dissemination derived from colon cancer was prevented by intraperitoneal administration of tocopheryl succinate nanoparticles. The biodistribution of tocopheryl succinate nanoparticles was evaluated using inductively coupled plasma mass spectroscopy and imaging analysis in mice administered quantum dot encapsulated tocopheryl succinate nanoparticles. Intraperitoneal administration of tocopheryl succinate nanoparticles showed longer retention in the abdominal cavity than by its intravenous (i.v.) administration. Moreover, due to effective biodistribution, tumor growth was prevented by intraperitoneal administration of tocopheryl succinate nanoparticles. Furthermore, the anticancer effect was attributed to the inhibition of cancer cell proliferation and improvement of the intraperitoneal microenvironment, such as decrease in the levels of vascular endothelial growth factor A, interleukin 10, and M2-like phenotype of tumor-associated macrophages. Collectively, intraperitoneal administration of tocopheryl succinate nanoparticles is expected to have multifaceted antitumor effects against colon cancer with peritoneal dissemination.


Asunto(s)
Neoplasias del Colon , Nanopartículas , Animales , Neoplasias del Colon/tratamiento farmacológico , Humanos , Ratones , Nanopartículas/química , Succinatos/farmacología , Distribución Tisular , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular , alfa-Tocoferol/química , alfa-Tocoferol/farmacología
9.
AAPS PharmSciTech ; 23(8): 296, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369392

RESUMEN

Self-assembled surfactant structures, such as liquid crystals, have the potential to enhance transdermal drug delivery. In the present study, the pseudo-ternary system of GET (composed of α-Isostearyl glyceryl ether (GEIS) and polysorbate 60)/1,3 butanediol (BG)/water) was shown to exhibit a complex phase diagram. Small- and wide-angle X-ray scattering (SWAXS) and freeze-fracture transmission electron microscopy (FF-TEM) revealed that GET6BG60 (6%GET/60%BG/34%Water) formed a lamellar phase with a repeated distance of approximately 72 nm. Such a long-repeated distance of the lamellar phase was unique in the surfactant system. Moreover, the various structures, such as multilamellar vesicles and branched-like layers, were observed, which suggested that they might be deformable. On the other hand, only core-shell particles were observed in GET6BG20, the core of which was an L3 phase. GET6BG20 and GET6BG60 significantly enhanced the skin permeation of the hydrophilic model drug, antipyrine (ANP) (log Ko/w, - 1.51). However, their permeation profiles were distinct. Liquid chromatography-tandem mass spectrometry revealed that epidermal accumulation of GEIS was significantly higher with GET6BG60 than GET6BG20 after 1.5 h of permeation, which might be attributed to differences in their deformable properties. Furthermore, GEIS was reported to affect intercellular lipids. Accumulated GEIS in the epidermis may have interacted with intercellular lipids and enhanced the transdermal delivery of ANP. The difference in the permeation profiles of ANP may be attributed to the penetration process of GEIS in the epidermis. This study suggests that GET6BG20 and GET6BG60 are unique carriers to enhance the permeation of hydrophilic drugs, such as ANP.


Asunto(s)
Piel , Administración Cutánea , Éteres de Glicerilo , Lípidos , Permeabilidad , Preparaciones Farmacéuticas , Tensoactivos/química , Agua
10.
Pharm Res ; 38(3): 503-513, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33638122

RESUMEN

PURPOSE: Non-lamellar liquid crystal (NLLC)-forming lipids have gained attention as a novel component because of their ability to self-assemble upon contact with body fluids. In this study, a novel NLLC-forming lipid, mono-O-(5, 9, 13-trimethyl-4-tetradecenyl) glycerol ester (C17MGE), and a model drug with a middle molecule weight, leuprolide acetate (LA), were used to confirm the usefulness of C17MGE as an excipient for depot formulations with sustained release properties. METHODS: A self-constructed depot formulation was prepared by mixing C17MGE and different types of phospholipids. The constructed NLLC structure was evaluated using small angle X-ray analysis and cryo-transmission electron microscopy. In vitro release and blood concentration profiles of LA were investigated. RESULTS: The NLLC structure was confirmed by small angle X-ray analysis. LA release was able to be modified by adding different ratios of various phospholipids to C17MGE. Formulations containing 1, 2-dioleoyl-sn-glycero-3-phosphoglycerol sodium salt with a mixing ratio of 12% or 24% (MDOPG12 or MDOPG24, respectively) exhibited sustained release profiles of LA. In addition, the blood concentration of LA was detected over 21 days or more after administration of MDOPG12, and the absolute bioavailability was calculated to be about 100%. CONCLUSIONS: A depot formulation using C17MGE was useful to achieve sustained release of LA.


Asunto(s)
Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Cristales Líquidos/química , Péptidos/química , Fosfolípidos/química , Animales , Disponibilidad Biológica , Portadores de Fármacos/farmacocinética , Composición de Medicamentos , Liberación de Fármacos , Excipientes/química , Glicerol/química , Leuprolida/química , Masculino , Ratas Wistar
11.
Pharm Res ; 38(2): 289-299, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33515137

RESUMEN

PURPOSE: Penetration enhancers are necessary to overcome a formidable barrier function of the stratum corneum in the development of topical formulations. Recently, non-lamella liquid crystal (NLLC)-forming lipids such as glycerol monooleate and phytantriol (PHY) are gaining increasing attention as a novel skin permeation enhancer. In the present study, fluorescein sodium (FL-Na) was used as a model hydrophilic drug, and acryl-base pressure-sensitive adhesive (PSA) tape containing NLLC forming lipids, mono-O-(5,9,13-trimethyl-4-tetradecenyl) glycerol ester (MGE) or PHY, was prepared to enhance drug permeation through the skin. METHODS: A PSA patch containing FL-Na was prepared by mixing FL-Na entrapped in NLLC and acrylic polymer. FL permeation through excised hairless rat skin, and also human skin, was investigated. Changes in lipid structure, folding/unfolding state of keratin in the stratum corneum, and penetration of MGE into the stratum corneum were investigated using confocal Raman microscopy. RESULTS: Enhanced FL permeation was observed by the application of a PSA patch containing MGE and PHY. Especially, dramatically enhancement effect was confirmed by 15% of MGE contained formulation. Penetration of MGE provided diminished orthorhombic crystal structure and a peak shift of the aliphatic CH3 vibration of keratin chains toward lower wavenumbers. CONCLUSION: The present results suggested that the formulation development by adding MGE may be useful for improving the skin permeation of mal-permeable drugs such as hydrophilic drugs.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Epidermis/metabolismo , Glicerol/farmacología , Absorción Cutánea/efectos de los fármacos , Parche Transdérmico , Adhesivos/química , Administración Cutánea , Animales , Epidermis/efectos de los fármacos , Fluoresceína/administración & dosificación , Fluoresceína/farmacocinética , Glicerol/análogos & derivados , Glicerol/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cristales Líquidos/química , Permeabilidad/efectos de los fármacos , Ratas
12.
Chem Pharm Bull (Tokyo) ; 69(8): 727-733, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34334516

RESUMEN

Recently, a novel humidifier that sprays water fine droplets equipped with a copolymer, poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT/PSS) was developed. PEDOT/PSS in the humidifier absorbs water from the environment and releases fine water droplets by heating. In the present study, the effect of hydration on the skin barrier, stratum corneum, was first determined by the application of fine water droplets using the humidifier. The skin-penetration enhancement effect of a model hydrophilic drug, caffeine, was also investigated using the humidifier and compared with a conventional water-evaporative humidifier. More prolonged skin hydration effect was observed after application of the fine water droplet release humidifier using PEDOT/PSS than that using a conventional humidifier. In addition, markedly higher skin permeation of caffeine was observed in both infinite and finite dose conditions. Furthermore, higher skin permeation of caffeine from oil/water emulsion containing caffeine was observed in finite dose conditions by pretreatment with the humidifier using PEDOT/PSS. This device can provide water droplets without replenishing water, so it is more convenient for enhancing the skin permeation of chemical compounds from topical drugs and cosmetic formulations.


Asunto(s)
Cafeína/farmacología , Humidificadores , Piel/efectos de los fármacos , Administración Cutánea , Aire , Animales , Cafeína/administración & dosificación , Cafeína/química , Humedad , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Permeabilidad/efectos de los fármacos , Ratas , Ratas sin Pelo , Absorción Cutánea/efectos de los fármacos , Temperatura , Agua/química
13.
Chem Pharm Bull (Tokyo) ; 69(7): 674-680, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193716

RESUMEN

Quality by design (QbD) is an essential concept for modern manufacturing processes of pharmaceutical products. Understanding the science behind manufacturing processes is crucial; however, the complexity of the manufacturing processes makes implementing QbD challenging. In this study, structural equation modeling (SEM) was applied to understand the causal relationships between variables such as process parameters, material attributes, and quality attributes. Based on SEM analysis, we identified a model composed of the above-mentioned variables and their latent factors without including observational data. Difficulties in fitting the observed data to the proposed model are often encountered in SEM analysis. To address this issue, we adopted Bayesian estimation with Markov chain Monte Carlo simulation. The tableting process involving the wet-granulation process for acetaminophen was employed as a model case for the manufacturing process. The results indicate that SEM analysis could be useful for implementing QbD for the manufacturing processes of pharmaceutical products.


Asunto(s)
Análisis de Clases Latentes , Comprimidos/química , Acetaminofén/química , Teorema de Bayes , Composición de Medicamentos/métodos , Cadenas de Markov , Método de Montecarlo , Análisis de Componente Principal
14.
Chem Pharm Bull (Tokyo) ; 69(5): 481-487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33952857

RESUMEN

Ionic liquid (IL) was prepared by mixing lidocaine and ibuprofen as a cation and anion, respectively, at various ratios. We determined the permeation of both compounds from the IL through a silicone membrane selected as a model biological membrane, and mathematically analyzed the permeation data from the viewpoint of the thermodynamic activities of lidocaine, ibuprofen, and the IL. As a result, IL and ibuprofen diffusely permeated through the membrane in the case of applying IL preparations with a molar fraction of ibuprofen of 0.5 or higher. The IL was thought to separate into lidocaine and ibuprofen in the receiver. On the other hand, when applying IL preparations with a molar fraction of lidocaine of 0.5 or higher, IL and lidocaine permeated. The permeation rate of IL itself was maximized when the applied IL was prepared using equimolar amounts of lidocaine and ibuprofen, and it decreased when the fraction of lidocaine or ibuprofen increased by more than 0.5. Their membrane permeation rates increased with an increase in their activity, and no more increase was found when the drugs were saturated in the IL. These membrane permeation profiles reflected well the mathematically calculated ones according to the concept of activity.


Asunto(s)
Ibuprofeno/química , Líquidos Iónicos/química , Lidocaína/química , Siliconas/química , Termodinámica , Aniones , Cationes , Líquidos Iónicos/síntesis química , Estructura Molecular
15.
Chem Pharm Bull (Tokyo) ; 69(11): 1088-1096, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34719591

RESUMEN

From the viewpoint of self-medication, it is valuable to develop patient-friendly scored tablets that possess dividing uniformity. In this context, we attempted to optimize the preparation conditions for a tablet with a unique shape, such as a concavely curved scored tablet (CCST). Employing a design of experiment and a response surface method incorporating a thin-plate spline interpolation, and a bootstrap resampling technique, the optimal preparation conditions for CCST were successfully developed. To make it possible to scaleup the optimal solution estimated on a trial-scale, a Bayesian estimation was applied. Credible ranges of critical responses in large-scale manufacturing were estimated as a posterior probability from the trial-scale experiment as a prior probability. In terms of the large-scale manufacturing, the possibility of solving the scaleup problem was suggested using Bayesian estimation. Furthermore, a simulation study using a finite element method revealed that strong tensile stresses generated along the tip of the score line in CCST when an outer force was applied to the back surface of CCST. An advantage in dividing uniformity is indicated by the unique shape of CCST.


Asunto(s)
Comprimidos/química , Teorema de Bayes , Química Farmacéutica , Humanos , Modelos Químicos , Solubilidad , Propiedades de Superficie , Comprimidos/farmacología , Resistencia a la Tracción
16.
Chem Pharm Bull (Tokyo) ; 69(8): 806-810, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34334526

RESUMEN

Effect of rubbing application on the skin permeation of a hydrophilic drug caffeine (CAF) and lipophilic drug rhododendrol (RD) from lotion and cream were investigated. Skin permeation of CAF was markedly increased by rubbing action independent of the formulation type. In addition, the skin penetration-enhancement effect was affected by the rubbing direction: rubbing application against the direction of hair growth showed the highest permeation compared with rubbing applications along the direction of hair growth and in a circular pattern on the skin. On the other hand, no enhancement effect was observed by the rubbing actions on the skin permeation of RD, regardless of formulation type. Change in the infundibula orifice size of hair follicles by the rubbing and following skin stretching may be related to the higher skin permeation for CAF. In contrast, high RD distribution into the stratum corneum may be a reason why no enhancement effect was observed by the rubbing action. These results can be helpful to predict safety and effectiveness of topically applied formulations.


Asunto(s)
Butanoles/farmacología , Cafeína/farmacología , Pomadas/farmacología , Crema para la Piel/farmacología , Piel/efectos de los fármacos , Animales , Butanoles/química , Cafeína/química , Interacciones Hidrofóbicas e Hidrofílicas , Pomadas/química , Permeabilidad/efectos de los fármacos , Absorción Cutánea/efectos de los fármacos , Crema para la Piel/química , Porcinos
17.
Chem Pharm Bull (Tokyo) ; 69(7): 639-645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193712

RESUMEN

The purpose of the present study was to evaluate whether iontophoresis (IP) accelerates the intradermal migration rate of medium molecular weight drugs. Sodium polystyrene sulfonate (PSA) and fluorescein isothiocyanate-dextran (FD) were used as model medium molecular weight acidic and non-electrolyte drugs, respectively. Low molecular weight acid and non-electrolyte drugs were also used for comparison. Drug-loaded excised split-layered skin (SL skin) was used in the experiment. SL skin was prepared using (i) whole skin was split once, (ii) the drug solution was applied on the lower skin, and (iii) the upper skin was layered onto the lower skin containing the drug solution as in the original skin. The effect of constant-current cathodal or anodal IP was applied to the SL skin, and the time course of the cumulative amount of drug migration from the SL skin through the dermis to the receiver was followed. In cases without IP and with anodal IP, the intradermal migration rates of medium molecular weight drugs were much lower than those of small molecules. The driving force for drug migration was thought to be simple diffusion through the skin layer. In contrast, cathodal IP significantly increased the intradermal migration rate of PSA not but of FD or low molecular weight drugs. This IP-facilitated migration of PSA was probably due to electrorepulsion. These results suggest that IP can be used to increase the intradermal migration of medium molecular weight charged drugs.


Asunto(s)
Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Iontoforesis/métodos , Poliestirenos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Dextranos/análisis , Fluoresceína-5-Isotiocianato/análisis , Fluoresceína-5-Isotiocianato/metabolismo , Fluorometría , Peso Molecular , Poliestirenos/análisis , Absorción Cutánea , Porcinos
18.
Chem Pharm Bull (Tokyo) ; 68(11): 1025-1033, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132369

RESUMEN

We examined the physicochemical and biochemical properties of mono-O-(5,9,13-trimethyl-4-tetradecenyl)glycerol ester (MGE), including ease of handling, high bioadhesiveness, quick and stable in vivo self-organization (forming a non-lamellar lyotropic liquid crystal [NLLC]), and high biomembrane permeation enhancement. We prepared MGE oral mucosa-applied spray preparations containing triamcinolone acetonide (TA), which is widely used in the treatment of stomatitis, and we examined the usefulness of the MGE preparations compared with commercially available oral mucosal application preparations containing 2,3-dihydroxypropyl oleate (1-mono(cis-9-octadecenoyl)glycerol (GMO) (previously studied as an NLLC-forming lipid) preparation. As a result, the MGE preparation applied to the oral mucosa can rapidly formed an NLLC with reverse hexagonal or cubic structures, or a mixture, on contact with water. In addition, by adding hydroxypropyl cellulose to the MGE preparation, similar retention properties on the oral mucous membrane were obtained to that using marketed drug preparations. Furthermore, the MGE spray formulation on the oral mucosa showed an equivalent or higher TA release as well as oral mucous membrane permeability compared with commercial formulations. Because MGE forms a stable NLLC and is easy to handle compared with GMO, MGE was considered to be a useful pharmaceutical additive for a spray preparation applied to the oral mucosa in combination.


Asunto(s)
Composición de Medicamentos/métodos , Lípidos/química , Cristales Líquidos/química , Mucosa Bucal/metabolismo , Animales , Permeabilidad de la Membrana Celular/efectos de los fármacos , Glicerol/química , Lípidos/farmacología , Masculino , Mucosa Bucal/efectos de los fármacos , Ratas , Ratas sin Pelo , Triamcinolona Acetonida/química , Triamcinolona Acetonida/farmacología
19.
Chem Pharm Bull (Tokyo) ; 68(9): 832-836, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32879223

RESUMEN

Rubbing actions are often conducted to apply topical formulations onto the skin. Although rubbing was found to increase the skin permeation of drugs, few reports have revealed whether rubbing enhanced either drug permeation through the stratum corneum (SC) or hair follicles (HFs) pathways, or through both. In the present study, we investigated the effects of rubbing on caffeine (CAF) distribution in the SC and HFs. The effect of rubbing direction on the skin penetration of CAF was also investigated. The skin concentration of CAF and its cumulative permeation amount were increased clearly by rubbing. More than six times higher CAF concentrations in the viable epidermis and dermis were observed 5 min after rubbing application compared with no rubbing. On the other hand, slightly increased CAF concentrations were observed in the SC, suggesting that CAF was delivered through the HF pathway by rubbing. Rubbing against the natural hair direction provided the highest skin permeation as well as skin concentrations. Changes in the morphology of the HF opening area might be related to the enhancement effect. These results may provide useful information to understand the effect of rubbing on the skin permeation of applied drugs.


Asunto(s)
Cafeína/química , Folículo Piloso/química , Piel/química , Administración Cutánea , Animales , Permeabilidad , Absorción Cutánea , Porcinos
20.
Chem Pharm Bull (Tokyo) ; 68(8): 779-783, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32741920

RESUMEN

Tranilast, a lipophilic drug with various ophthalmic applications, was used as a model drug to establish the possibility of delivering lipophilic drugs through the eyelid skin. Pharmacokinetics and tissue distribution studies were conducted employing three application methods (topical application onto eyelid skin, eye drops, and intravenous injection in rats) to broaden the significance of delivering drugs through the eyelids. A two-compartment open model analysis was used for intravenous route while a non-compartmental evaluation was used for topical applications to estimate the pharmacokinetic parameters. Eyelid skin application, eye drops, and intravenous administration had mean residence times (MRTs) of 8.07, 1.79, and 3.25 h in the eyeball and 10.8, 1.29, and 2.97 h in the conjunctiva, correspondingly. In the eyeball, topical application of tranilast onto the eyelids corresponded to a 4.5- and 2.5-fold higher MRT compared with eye drops and intravenous administration, respectively. An 8.4- or 3.6-fold higher MRT was observed in the conjunctiva after topical application compared with eye drops or intravenous administration, respectively. This indicated a gradual penetration of tranilast into the eyeball and conjunctiva, subsequently a slow elimination from these target tissues.


Asunto(s)
Piel/efectos de los fármacos , ortoaminobenzoatos/farmacología , Administración Intravenosa , Administración Tópica , Animales , Cromatografía Líquida de Alta Presión , Conjuntiva/metabolismo , Portadores de Fármacos/química , Párpados/metabolismo , Semivida , Masculino , Soluciones Oftálmicas/química , Soluciones Oftálmicas/farmacocinética , Soluciones Oftálmicas/farmacología , Ratas , Ratas sin Pelo , Piel/metabolismo , Espectrometría de Masas en Tándem , Distribución Tisular , ortoaminobenzoatos/sangre , ortoaminobenzoatos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA