Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 23(6)2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29890626

RESUMEN

Pseudomonas aeruginosa is one of the most dreaded human pathogens, because of its intrinsic resistance to a number of commonly used antibiotics and ability to form sessile communities (biofilms). Innovative treatment strategies are required and that can rely on the attenuation of the pathogenicity and virulence traits. The interruption of the mechanisms of intercellular communication in bacteria (quorum sensing) is one of such promising strategies. A cobalt coordination compound (Co(HL)2) synthesized from (E)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-4-(p-tolyl)thiazole (HL) is reported herein for the first time to inhibit P. aeruginosa 3-oxo-C12-HSL-dependent QS system (LasI/LasR system) and underling phenotypes (biofilm formation and virulence factors). Its interactions with a possible target, the transcriptional activator protein complex LasR-3-oxo-C12-HSL, was studied by molecular modeling with the coordination compound ligand having stronger predicted interactions than those of co-crystallized ligand 3-oxo-C12-HSL, as well as known-binder furvina. Transition metal group 9 coordination compounds may be explored in antipathogenic/antibacterial drug design.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Cobalto/química , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum , Tiazoles/farmacología , Antibacterianos/química , Ligandos , Luminiscencia , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Oligopéptidos/biosíntesis , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/fisiología , Piocianina/biosíntesis , Tiazoles/química
2.
Polymers (Basel) ; 14(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36432960

RESUMEN

Many articles in the literature deal with horseradish peroxidase (HRP) biomineralization, but none pay attention to the isoenzyme composition of commercial HRP or the influence of the carbohydrate component of the protein molecule on the biomineralization process. To study the impact of these factors, we performed periodate oxidation of commercial HRP and a purified HRP-C isoform for biomineralization within ZIF-8. With purified HRP, enzyme@ZIF-8 biocomposites with higher activity were obtained, while periodate oxidation of the carbohydrate component of both commercial HRP and purified HRP-C yields biocomposites with very high activity in acetate buffer that does not degrade the ZIF-8 structure. Using acetate instead of phosphate buffer can prevent the false high activity of HRP@ZIF-8 biocomposites caused by the degradation of ZIF-8 coating. At the same time, purification and especially oxidation of the carbohydrate component of enzymes prior to biomineralization lead to significantly improved activity of the biocomposites.

3.
Eur J Med Chem ; 238: 114449, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580425

RESUMEN

The biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands. Studies on anticancer activity of cadmium complexes showed that the complexation of various ligands resulted in complexes that showed better activities than approved drugs. In the present study, cadmium complexes with biologically potent thiazolyl/selenazoyl-hydrazone ligands have been prepared, and tested for their activity against different types of tumor cell models. The complexation of ligands with Cd(II) resulted in a synergistic effect. The antiproliferative activity study revealed that all complexes are more active compared to 5-fluorouracil and cisplatin. The mechanism of tumor cell growth inhibition reveal that selenium-based compounds induce cell death in T-47D (gland carcinoma) cells through apoptosis via caspase-3/7 activation. Additionally, their pro-apoptotic effect was stronger compared to etoposide and cisplatin. Nuclease activity, detected by gel electrophoresis, may be the possible mechanism of anticancer action of investigated complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Cadmio/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Humanos , Hidrazonas/farmacología , Hidrazonas/uso terapéutico , Ligandos , Neoplasias/tratamiento farmacológico , Azufre/farmacología , Azufre/uso terapéutico
4.
Polymers (Basel) ; 13(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833174

RESUMEN

Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to encapsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein's surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from -10.2 to -36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.

5.
J Inorg Biochem ; 190: 45-66, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30352315

RESUMEN

A novel binuclear Cd complex (1) with hydrazone-based ligand was prepared and characterized by spectroscopy and single crystal X-ray diffraction techniques. Complex 1 reveals a strong pro-apoptotic activity in both human, mammary adenocarcinoma cells (MCF-7) and pancreatic AsPC-1 cancer stem cells (CSCs). While apoptosis undergoes mostly caspase-independent, 1 stimulates the activation of intrinsic pathway with noteworthy down regulation of caspase-8 activity in respect to non-treated controls. Distribution of cells over mitotic division indicates that 1 caused DNA damage in both cell lines, which is confirmed in DNA interaction studies. Compared to 1, cisplatin (CDDP) does not achieve cell death in 2D cultured AsPC-1 cells, while induces different pattern of cell cycle changes and caspase activation in 2D cultured MCF-7 cells, implying that these two compounds do not share similar mechanism of action. Additionally, 1 acts as a powerful inducer of mitochondrial superoxide production with dissipated trans-membrane potential in the majority of the treated cells already after 6 h of incubation. On 3D tumors, 1 displays a superior activity against CSC model, and at 100 µM induces disintegration of spheroids within 2 days of incubation. Fluorescence spectroscopy, along with molecular docking show that compound 1 binds to the minor groove of DNA. Compound 1 binds to the human serum albumin (HSA) showing that the HSA can effectively transport and store 1 in the human body. Thus, our current study strongly supports further investigations on antitumor activity of 1 as a drug candidate for the treatment of highly resistant pancreatic cancer.


Asunto(s)
Cadmio/química , Complejos de Coordinación/farmacología , Hidrazonas/química , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Complejos de Coordinación/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular
6.
J Inorg Biochem ; 199: 110758, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31299379

RESUMEN

Anticancer activity of Pd complexes 1-5 with bidentate N-heteroaromatic hydrazone ligands was investigated on human acute monocytic leukemia (THP-1; cells in a suspension) and human mammary adenocarcinoma (MCF-7; two-dimensional layer and three-dimensional spheroid tumor model) cell lines. For the Pd(II) complexes with condensation products of ethyl hydrazainoacetate and quinoline-8-carboxaldehyde (complex 1) and 2-formylpyridine (complex 3), for which apoptosis was determined as a mechanism of anticancer activity, further investigation revealed that they arrest the cell cycle in G0/G1 phase, induce generation of reactive oxygen species and inhibit Topoisomerase I in vitro. In silico studies corroborate experimental findings that these complexes show topoisomerase inhibition activity in the micromolar range and indicate binding to a DNA's minor groove as another potential target. Based on the results obtained by circular dichroism and fluorescence spectroscopy measurements, the most active complexes are suitable to be delivered to a blood stream via human serum albumin.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Daño del ADN/efectos de los fármacos , Hidrazonas/química , Paladio/química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Cisplatino/farmacología , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , ADN-Topoisomerasas de Tipo I/metabolismo , Humanos , Células MCF-7 , Estructura Molecular , Unión Proteica , Albúmina Sérica Humana/metabolismo , Relación Estructura-Actividad , Células THP-1
7.
Front Chem ; 6: 247, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30018949

RESUMEN

The novel approach in the treatment of complex multifactorial diseases, such as neurodegenerative disorders and cancer, requires a development of efficient multi-targeting oriented drugs. Since oxidative stress significantly contributes to the pathogenesis of cancer and neurodegenerative disorders, potential drug candidates should possess good antioxidant properties. Due to promising biological activities shown for structurally related (1,3-thiazol-2-yl)hydrazones, a focused library of 12 structurally related benzylidene-based (1,3-selenazol-2-yl)hydrazones was designed as potential multi-targeting compounds. Monoamine oxidases (MAO) A/B inhibition properties of this class of compounds have been investigated. Surprisingly, the p-nitrophenyl-substituted (1,3-selenazol-2-yl)hydrazone 4 showed MAO B inhibition in a nanomolar concentration range (IC50 = 73 nM). Excellent antioxidant properties were confirmed in a number of different in vitro assays. Antiproliferative activity screening on a panel of six human solid tumor cell lines showed that potencies of some of the investigated compounds was comparable or even better than that of the positive control 5-fluorouracil. In-silico calculations of ADME properties pointed to promising good pharmacokinetic profiles of investigated compounds. Docking studies suggest that some compounds, compared to positive controls, have the ability to strongly interact with targets relevant to cancer such as 5'-nucleotidase, and to neurodegenerative diseases such as the small conductance calcium-activated potassium channel protein 1, in addition to confirmation of inhibitory binding at MAO B.

8.
Dalton Trans ; 46(9): 2910-2924, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28197616

RESUMEN

The first Co(iii) complexes with (1,3-selenazol-2-yl)hydrazones as an unexplored class of ligands were prepared and characterized by NMR spectroscopy and X-ray diffraction analysis. The novel ligands act as NNN tridentate chelators forming octahedral Co(iii) complexes. The impact of structural changes on ligands' periphery as well as that of isosteric replacement of sulphur with selenium on the electrochemical and electronic absorption features of complexes are explored. To support the experimental data, density functional theory (DFT) calculations were also conducted. Theoretical NMR chemical shifts, the relative energies and natural bond orbital (NBO) analysis are calculated within the DFT approach, while the singlet excited state energies and HOMO-LUMO energy gap were calculated with time-dependent density functional theory (TD-DFT). The electrophilic f- and nucleophilic f+ Fukui functions are well adapted to find the electrophile and nucleophile centres in the molecules. Both (1,3-selenazol-2-yl)- and (1,3-thiazol-2-yl)hydrazone Co(iii) complexes showed potent antimicrobial and antioxidant activity. A significant difference among them was a smaller cytotoxicity of selenium compounds.

9.
Medchemcomm ; 8(1): 103-111, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108695

RESUMEN

Cobalt complexes with semi- and thiosemicarbazones of 8-quinolinecarboxaldehyde have been synthesized and characterized by X-ray diffraction analysis. These novel complexes and a previously synthesized cobalt complex with a selenium-based selenosemicarbazone ligand showed myeloid differentiation activity on all trans retinoic acid resistant HL-60 acute myeloid leukaemia cells. They also showed varying levels of cytotoxicity on five human tumor cell lines: cervix carcinoma cells (HeLa), lung adenocarcinoma cells (A549), colorectal adenocarcinoma cells (LS-174), breast carcinoma cells (MDA-MB-361), and chronic myeloid leukaemia (K562) as well as one normal human cell line: fetal lung fibroblast cells (MRC-5). Leukaemia differentiation was most strongly induced by a metal-free oxygen ligand and the selenium ligand, whilst the latter and the cobalt(ii) complex with an oxygen ligand showed the strongest dose-dependent cytotoxic activity. In four out of five investigated tumor cell lines, it was of the same order of magnitude as cisplatin. These best compounds, however, had lower toxicity on non-transformed MRC-5 cells than cisplatin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA