Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(23): e2407437121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814864

RESUMEN

The accessory protease transmembrane protease serine 2 (TMPRSS2) enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake into ACE2-expressing cells, although how increased entry impacts downstream viral and host processes remains unclear. To investigate this in more detail, we performed infection assays in engineered cells promoting ACE2-mediated entry with and without TMPRSS2 coexpression. Electron microscopy and inhibitor experiments indicated TMPRSS2-mediated cell entry was associated with increased virion internalization into endosomes, and partially dependent upon clathrin-mediated endocytosis. TMPRSS2 increased panvariant uptake efficiency and enhanced early rates of virus replication, transcription, and secretion, with variant-specific profiles observed. On the host side, transcriptional profiling confirmed the magnitude of infection-induced antiviral and proinflammatory responses were linked to uptake efficiency, with TMPRSS2-assisted entry boosting early antiviral responses. In addition, TMPRSS2-enhanced infections increased rates of cytopathology, apoptosis, and necrosis and modulated virus secretion kinetics in a variant-specific manner. On the virus side, convergent signatures of cell-uptake-dependent innate immune induction were recorded in viral genomes, manifesting as switches in dominant coupled Nsp3 residues whose frequencies were correlated to the magnitude of the cellular response to infection. Experimentally, we demonstrated that selected Nsp3 mutations conferred enhanced interferon antagonism. More broadly, we show that TMPRSS2 orthologues from evolutionarily diverse mammals facilitate panvariant enhancement of cell uptake. In summary, our study uncovers previously unreported associations, linking cell entry efficiency to innate immune activation kinetics, cell death rates, virus secretion dynamics, and convergent selection of viral mutations. These data expand our understanding of TMPRSS2's role in the SARS-CoV-2 life cycle and confirm its broader significance in zoonotic reservoirs and animal models.


Asunto(s)
COVID-19 , Inmunidad Innata , SARS-CoV-2 , Serina Endopeptidasas , Internalización del Virus , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , Humanos , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , COVID-19/virología , COVID-19/inmunología , COVID-19/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Replicación Viral , Animales , Endocitosis , Células HEK293 , Chlorocebus aethiops , Citología
2.
J Virol ; 98(3): e0192123, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38319104

RESUMEN

Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE: Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.


Asunto(s)
Aptitud Genética , Hepacivirus , Hepatocitos , Interacciones Microbiota-Huesped , Inmunidad Innata , Mutación , Humanos , Células Cultivadas , Estrés del Retículo Endoplásmico , Aptitud Genética/genética , Aptitud Genética/inmunología , Hepacivirus/genética , Hepacivirus/crecimiento & desarrollo , Hepacivirus/inmunología , Hepacivirus/fisiología , Hepatitis C/inmunología , Hepatitis C/virología , Hepatocitos/inmunología , Hepatocitos/virología , Interacciones Microbiota-Huesped/inmunología , MicroARNs/metabolismo , Pase Seriado , Respuesta de Proteína Desplegada , Tropismo Viral , Virión/crecimiento & desarrollo , Virión/metabolismo , Replicación Viral/genética , Replicación Viral/inmunología
3.
Hepatology ; 80(5): 1239-1251, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38728662

RESUMEN

BACKGROUND AND AIMS: HEV is estimated to be responsible for 70,000 deaths annually, yet therapy options remain limited. In the pursuit of effective antiviral therapies, targeting viral entry holds promise and has proven effective for other viruses. However, the precise mechanisms and host factors required during HEV entry remain unclear. Cellular proteases have emerged as host factors required for viral surface protein activation and productive cell entry by many viruses. Hence, we investigated the functional requirement and therapeutic potential of cellular protease during HEV infection. APPROACH AND RESULTS: Using our established HEV cell culture model and subgenomic HEV replicons, we found that blocking lysosomal cathepsins (CTS) with small molecule inhibitors impedes HEV infection without affecting replication. Most importantly, the pan-cathepsin inhibitor K11777 suppressed HEV infections with an EC 50 of ~0.02 nM. Inhibition by K11777, devoid of notable toxicity in hepatoma cells, was also observed in HepaRG and primary human hepatocytes. Furthermore, through time-of-addition and RNAscope experiments, we confirmed that HEV entry is blocked by inhibition of cathepsins. Cathepsin L (CTSL) knockout cells were less permissive to HEV, suggesting that CTSL is critical for HEV infection. Finally, we observed cleavage of the glycosylated ORF2 protein and virus particles by recombinant CTSL. CONCLUSIONS: In summary, our study highlights the pivotal role of lysosomal cathepsins, especially CTSL, in the HEV entry process. The profound anti-HEV efficacy of the pan-cathepsin inhibitor K11777, especially with its notable safety profile in primary cells, further underscores its potential as a therapeutic candidate.


Asunto(s)
Catepsinas , Virus de la Hepatitis E , Internalización del Virus , Humanos , Internalización del Virus/efectos de los fármacos , Virus de la Hepatitis E/efectos de los fármacos , Virus de la Hepatitis E/fisiología , Catepsinas/antagonistas & inhibidores , Catepsinas/metabolismo , Catepsina L/antagonistas & inhibidores , Catepsina L/metabolismo , Hepatitis E/tratamiento farmacológico , Hepatitis E/virología , Replicación Viral/efectos de los fármacos , Hepatocitos/virología , Hepatocitos/efectos de los fármacos , Antivirales/farmacología , Antivirales/uso terapéutico
4.
Proc Natl Acad Sci U S A ; 119(34): e2202653119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969792

RESUMEN

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and is the leading cause of enterically transmitted viral hepatitis worldwide. Ribavirin (RBV) is currently the only treatment option for many patients; however, cases of treatment failures or posttreatment relapses have been frequently reported. RBV therapy was shown to be associated with an increase in HEV genome heterogeneity and the emergence of distinct HEV variants. In this study, we analyzed the impact of eight patient-derived open reading frame 2 (ORF2) single-nucleotide variants (SNVs), which occurred under RBV treatment, on the replication cycle and pathogenesis of HEV. The parental HEV strain and seven ORF2 variants showed comparable levels of RNA replication in human hepatoma cells and primary human hepatocytes. However, a P79S ORF2 variant demonstrated reduced RNA copy numbers released in the supernatant and an impairment in the production of infectious particles. Biophysical and biochemical characterization revealed that this SNV caused defective, smaller HEV particles with a loss of infectiousness. Furthermore, the P79S variant displayed an altered subcellular distribution of the ORF2 protein and was able to interfere with antibody-mediated neutralization of HEV in a competition assay. In conclusion, an SNV in the HEV ORF2 could be identified that resulted in altered virus particles that were noninfectious in vitro and in vivo, but could potentially serve as immune decoys. These findings provide insights in understanding the biology of circulating HEV variants and may guide development of personalized antiviral strategies in the future.


Asunto(s)
Virus de la Hepatitis E , Ribavirina , Proteínas Virales , Línea Celular Tumoral , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/fisiología , Hepatocitos/virología , Humanos , Recurrencia Local de Neoplasia/genética , Nucleótidos , ARN Viral , Ribavirina/farmacología , Proteínas Virales/genética , Replicación Viral
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35131898

RESUMEN

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Interferón-alfa/farmacología , SARS-CoV-2/efectos de los fármacos , Transcriptoma , Replicación Viral/efectos de los fármacos , Animales , COVID-19/inmunología , COVID-19/virología , Chlorocebus aethiops , Clonación Molecular , Modelos Animales de Enfermedad , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Interferón-alfa/genética , Interferón-alfa/inmunología , Ratones , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/farmacología , Proteínas Recombinantes/clasificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Transducción de Señal , Células Vero
6.
Emerg Infect Dis ; 30(5): 934-940, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666600

RESUMEN

To determine the kinetics of hepatitis E virus (HEV) in asymptomatic persons and to evaluate viral load doubling time and half-life, we retrospectively tested samples retained from 32 HEV RNA-positive asymptomatic blood donors in Germany. Close-meshed monitoring of viral load and seroconversion in intervals of ≈4 days provided more information about the kinetics of asymptomatic HEV infections. We determined that a typical median infection began with PCR-detectable viremia at 36 days and a maximum viral load of 2.0 × 104 IU/mL. Viremia doubled in 2.4 days and had a half-life of 1.6 days. HEV IgM started to rise on about day 33 and peaked on day 36; IgG started to rise on about day 32 and peaked on day 53. Although HEV IgG titers remained stable, IgM titers became undetectable in 40% of donors. Knowledge of the dynamics of HEV viremia is useful for assessing the risk for transfusion-transmitted hepatitis E.


Asunto(s)
Donantes de Sangre , Virus de la Hepatitis E , Hepatitis E , ARN Viral , Carga Viral , Viremia , Humanos , Hepatitis E/epidemiología , Hepatitis E/virología , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/inmunología , Masculino , Adulto , Inmunoglobulina M/sangre , Femenino , Inmunoglobulina G/sangre , Cinética , Persona de Mediana Edad , Infecciones Asintomáticas/epidemiología , Estudios Retrospectivos , Anticuerpos Antihepatitis/sangre , Alemania/epidemiología , Adulto Joven
7.
Antimicrob Agents Chemother ; : e0103524, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360823

RESUMEN

Infection with hepatitis E virus (HEV) represents a global problem, with over 20 million people infected annually. No specific antiviral drugs are available for treating HEV infection, necessitating the development of novel targeted therapeutics. Here, we report that the N-methyl-D-aspartate receptor (NMDAR) antagonist ifenprodil, a clinically approved drug used to treat idiopathic pulmonary fibrosis (IPF), is an HEV inhibitor in liver-derived cells. In vitro investigation demonstrates that ifenprodil suppresses viral protein expression in a dose-dependent manner in human hepatoma cells by inhibiting early stages of viral infection. We also found that ifenprodil modulates host cell intrinsic biological processes distinct from virus-induced innate immunity, inhibiting HEV RNA accumulation in primary human hepatocytes. Finally, the inhibitory effect of ifenprodil in vivo was also tested in rabbits challenged with the HEV-3ra CHN-BJ-R14 strain. Fecal virus shedding was below the limit of detection in two animals for both ribavirin-treated and ifenprodil-treated rabbits compared to vehicle-treated control animals. Our data demonstrate that ifenprodil is an effective anti-HEV compound with potential as a therapeutic candidate for the treatment of HEV infection.

8.
Hepatology ; 78(6): 1882-1895, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37334496

RESUMEN

BACKGROUND AND AIMS: Chronic HEV infections remain a serious problem in immunocompromised patients, as specifically approved antiviral drugs are unavailable. In 2020, a 24-week multicenter phase II pilot trial was carried out, evaluating the nucleotide analog sofosbuvir by treating nine chronically HEV-infected patients with sofosbuvir (Trial Number NCT03282474). During the study, antiviral therapy reduced virus RNA levels initially but did not lead to a sustained virologic response. Here, we characterize the changes in HEV intrahost populations during sofosbuvir treatment to identify the emergence of treatment-associated variants. APPROACH AND RESULTS: We performed high-throughput sequencing on RNA-dependent RNA polymerase sequences to characterize viral population dynamics in study participants. Subsequently, we used an HEV-based reporter replicon system to investigate sofosbuvir sensitivity in high-frequency variants. Most patients had heterogenous HEV populations, suggesting high adaptability to treatment-related selection pressures. We identified numerous amino acid alterations emerging during treatment and found that the EC 50 of patient-derived replicon constructs was up to ~12-fold higher than the wild-type control, suggesting that variants associated with lower drug sensitivity were selected during sofosbuvir treatment. In particular, a single amino acid substitution (A1343V) in the finger domain of ORF1 could reduce susceptibility to sofosbuvir significantly in 8 of 9 patients. CONCLUSIONS: In conclusion, viral population dynamics played a critical role during antiviral treatment. High population diversity during sofosbuvir treatment led to the selection of variants (especially A1343V) with lower sensitivity to the drug, uncovering a novel mechanism of resistance-associated variants during sofosbuvir treatment.


Asunto(s)
Hepatitis E , Sofosbuvir , Humanos , Sofosbuvir/farmacología , Sofosbuvir/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Hepatitis E/tratamiento farmacológico , Respuesta Virológica Sostenida , Quimioterapia Combinada , Hepacivirus/genética , Genotipo , Resultado del Tratamiento
9.
J Med Virol ; 96(10): e29935, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39323094

RESUMEN

Studies have pointed to a decisive role of autoantibodies in the context of sepsis and severe Coronavirus disease 2019 (COVID-19), which itself often fulfills the criteria for sepsis, including dysregulated immune responses and organ dysfunction. To directly compare and further analyze the autoantibody profiles of sepsis patients with and without COVID-19, the luciferase immunoprecipitation systems (LIPS) assay was used to measure the levels of autoantibodies against a variety of clinically relevant cytokines, lung-associated proteins, other autoantigens, and antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, cytokine titers were measured with the LEGENDplex™ Human Antivirus Response Panel. We observed significantly increased levels of autoantibodies in 59% of the COVID-19-Sepsis group compared to 48% of the Sepsis group. Significant differences were identified between the groups for the levels of autoantibodies against gATPase. The cytokine levels of interferon (IFN)-λ1 and IP-10 were higher in the COVID-19-Sepsis group compared to the Sepsis group. Additional correlations between autoantibodies, cytokines and 30-day survival could be demonstrated, suggesting varied underlying pathological mechanisms. Elevated levels of cytokines and autoantibodies may serve as prognostic indicators for the survival probability of sepsis patients, highlighting the intricate relationship between immune responses and patient outcomes in the context of both sepsis and COVID-19.


Asunto(s)
Autoanticuerpos , COVID-19 , Citocinas , Sepsis , Humanos , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/sangre , Autoanticuerpos/sangre , Sepsis/inmunología , Sepsis/mortalidad , Sepsis/sangre , Citocinas/sangre , Masculino , Femenino , Persona de Mediana Edad , Anciano , SARS-CoV-2/inmunología , Adulto , Pronóstico , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre
10.
J Med Virol ; 96(6): e29735, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864313

RESUMEN

Recently, hepatitis E virus (HEV, Paslahepevirus balayani) particles were detected for the first time in the ejaculate of two chronically infected patients. Since then, we have been able to detect HEV in ejaculate in five further patients, and thus in a total of seven out of nine (78%) chronically infected men (age 36-67 years, median 56 years). In five patients, the HEV RNA concentration was more than 100-fold higher compared to the serum, while in two patients, the viral load was more than 10-fold lower. However, it has remained unclear whether viral particles shed in the ejaculate were infectious, as a previous cell culture model had failed to demonstrate the infectivity. In the current study, we employed an optimized HEV cell culture system based on overconfluent PLC/PRF/5 cells to investigate the infectivity of HEV particles from ejaculate and other body fluids. With this approach, we were able to show for the first time that HEV particles in the ejaculate from several patients were infectious. HEV replicated to high viral loads of 1e9 HEV RNA copies per ml. This indicates that HEV-positive ejaculate could bear a risk of infection for sexual partners.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , ARN Viral , Carga Viral , Humanos , Virus de la Hepatitis E/aislamiento & purificación , Persona de Mediana Edad , Hepatitis E/virología , Masculino , Adulto , Anciano , ARN Viral/análisis , Semen/virología , Virión , Línea Celular , Esparcimiento de Virus
11.
Hepatology ; 77(6): 2104-2117, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36745934

RESUMEN

BACKGROUND AND AIMS: Being the most common cause of acute viral hepatitis with >20 million cases per year and 70,000 deaths annually, HEV presents a long-neglected and underinvestigated health burden. Although the entry process of viral particles is an attractive target for pharmacological intervention, druggable host factors to restrict HEV entry have not been identified so far. APPROACH AND RESULTS: Here we identify the EGF receptor (EGFR) as a novel host factor for HEV and reveal the significance of EGFR for the HEV entry process. By utilizing RNAi, chemical modulation with Food and Drug Administration-approved drugs, and ectopic expression of EGFR, we revealed that EGFR is critical for HEV infection without affecting HEV RNA replication or assembly of progeny virus. We further unveiled that EGFR itself and its ligand-binding domain, rather than its signaling function, is responsible for the proviral effect. Modulation of EGF expression in HepaRG cells and primary human hepatocytes affected HEV infection. CONCLUSIONS: Taken together, our study provides novel insights into the life cycle of HEV and identified EGFR as a possible target for future antiviral strategies against HEV.


Asunto(s)
Virus de la Hepatitis E , Hepatocitos , Humanos , Hepatocitos/metabolismo , Antivirales/farmacología , Receptores ErbB/metabolismo , Interferencia de ARN , Transducción de Señal , Virus de la Hepatitis E/genética , Replicación Viral
12.
PLoS Biol ; 19(12): e3001490, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34962926

RESUMEN

Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged-Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.


Asunto(s)
Autofagia/genética , Sistemas CRISPR-Cas , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Antivirales/farmacología , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Replicación Viral
13.
Liver Int ; 44(3): 637-643, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291853

RESUMEN

Hepatitis E virus (HEV) is prevalent worldwide and can cause persistent infection with severe morbidity. Antiviral treatment approaches can lead to the emergence of viral variants encoding escape mutations that may impede viral clearance. The frequency of these variants remains unknown in the human population as well as environment due to limited comprehensive data on HEV diversity. In this study, we investigated the HEV prevalence and diversity of circulating variants in environmental samples, that is, wastewater and rivers from North-Rhine Westphalia, Germany. HEV prevalence could be determined with 73% of samples tested positive for viral RNA via qRT-PCR. Using high-throughput sequencing, we were able to assess the overall genetic diversity in these samples and identified the presence of clinically relevant variants associated with drug resistance. In summary, monitoring variants from environmental samples could provide valuable insights into estimating HEV prevalence and identifying circulating variants that can impact treatment outcome.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Humanos , Virus de la Hepatitis E/genética , Aguas Residuales , Hepatitis E/diagnóstico , Hepatitis E/tratamiento farmacológico , Hepatitis E/epidemiología , Filogenia , Prevalencia , ARN Viral/genética
14.
Liver Int ; 44(11): 2983-2995, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39175256

RESUMEN

BACKGROUND AND AIMS: Severe acute respiratory syndrome coronavirus (SARS-CoV-2) preferentially infects the respiratory tract; however, several studies have implicated a multi-organ involvement. Hepatic dysfunctions caused by SARS-CoV-2 infection have been increasingly recognized and described to correlate with disease severity. To elucidate molecular factors that could contribute towards hepatic infection, we concentrated on microRNAs (miRNAs), a class of small non-coding RNAs that modulate various cellular processes and which are reported to be differentially regulated during liver injury. We aimed to study the infection of primary human hepatocytes (PHH) with SARS-CoV-2 and to evaluate the potential of miRNAs for modulating viral infection. METHODS: We analysed liver autopsies from a coronavirus disease 19 (COVID-19)-positive cohort for the presence of viral RNA using Nanopore sequencing. PHH were used for the infection with SARS-CoV-2. The candidate miRNAs targeting angiotensin converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) were identified using in silico approaches. To discover the potential regulatory mechanism, transfection experiments, qRT-PCRs, western blots and luciferase reporter assays were performed. RESULTS: We could detect SARS-CoV-2 RNA in COVID-19-positive liver autopsies. We show that PHH express ACE2 and TMPRSS2 and can be readily infected with SARS-CoV-2, resulting in robust replication. Transfection of selected miRNA mimics reduced SARS-CoV-2 receptor expression and SARS-CoV-2 burden in PHH. In silico and biochemical analyses supported a potential direct binding of miR-141-3p to the SARS-CoV-2 genome. CONCLUSION: We confirm that PHH are susceptible to SARS-CoV-2 infection and demonstrate selected miRNAs targeting SARS-CoV-2 entry factors and/or the viral genome reduce viral loads. These data provide novel insights into hepatic susceptibility to SARS-CoV-2 and associated dysfunctions in COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Hepatocitos , MicroARNs , SARS-CoV-2 , Serina Endopeptidasas , Humanos , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Hepatocitos/virología , Hepatocitos/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Internalización del Virus , Masculino , Femenino , Persona de Mediana Edad , Pandemias , Betacoronavirus , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/genética , Células Cultivadas , Neumonía Viral/virología , Neumonía Viral/genética , Neumonía Viral/metabolismo , Anciano , ARN Viral
15.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38439676

RESUMEN

AIMS: We aimed to develop a method to assess the virucidal performance of domestic laundry in a lab-scale washing machine (Rotawash) based on EN 17658. METHODS AND RESULTS: For method development, virus recovery was investigated after drying on cotton carriers for three test viruses murine norovirus (MNV), modified vaccinia virus Ankara (MVA), and bovine coronavirus (BCoV), followed by washing simulations in flasks and Rotawash. MNV and MVA demonstrated sufficient recovery from carriers after drying and washing (up to 40°C and 60 min). BCoV exhibited lower recovery, indicating less relevance as a test virus. Rotawash efficacy tests conducted with MNV, a resistant, non-enveloped virus, showed limited efficacy of a bleach-free detergent, aligning with results from a domestic washing machine. Rotawash washes achieved higher reductions in infectious virus titers than suspension tests, indicating the role of washing mechanics in virus removal. CONCLUSIONS: This study established a practical method to test the virucidal efficacy of laundry detergents in Rotawash, simulating domestic washing.


Asunto(s)
Detergentes , Norovirus , Bovinos , Animales , Ratones , Detergentes/farmacología , Textiles
16.
Euro Surveill ; 29(24)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873797

RESUMEN

BackgroundAwareness of transfusion-transmitted hepatitis E raised in recent years led to the mandatory testing of blood donations in some European countries for hepatitis E virus (HEV) RNA. However, little is known about the epidemiology of HEV infections.AimTo and describe and analyse the epidemiology of HEV infections in blood donors in Germany.MethodsData from routine testing of therapeutic blood products donated between January 2015 and December 2022 at the Uni.Blutspendedienst OWL were analysed at the Institute of Laboratory and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia. A total of 731,630 allogenic blood donations from 119,610 individual blood donors were tested for HEV RNA in minipools of 96 samples. The HEV RNA-positive donations were analysed for the presence of anti-HEV IgM and IgG. The HEV strains were genotyped and various clinical liver-specific parameters were determined.ResultsA total of 497 HEV-positive blood donations were identified, resulting in a yearly incidence of 1:1,474, from which 78.4% of the donations were RNA-only positive. Increased alanine aminotransferase activity was determined in 26.6% of HEV RNA-positive donors and was associated with the detection of IgG antibodies (1.2% anti-HEV IgM-positive, 11.9% anti-HEV IgM- and IgG-positive and 8.5% anti-HEV IgG-positive). An average incidence of 0.084-0.083% HEV RNA-positive donations in June and July in all years was observed, and a higher proportion of HEV RNA-positive men compared with women. All isolated HEV sequences corresponded to genotype 3.ConclusionOur results underline the necessity of HEV RNA screening in blood donations.


Asunto(s)
Hepatitis E , Hepatitis E/sangre , Hepatitis E/epidemiología , Alemania/epidemiología , Donantes de Sangre/estadística & datos numéricos , Donación de Sangre/estadística & datos numéricos , Transfusión Sanguínea/estadística & datos numéricos , Humanos , Masculino , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , ARN , Inmunoglobulina M , Inmunoglobulina G , Hígado/metabolismo
17.
J Infect Dis ; 228(9): 1227-1230, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129073

RESUMEN

The spread of nonzoonotic monkeypox virus (MPXV) infections necessitates the reevaluation of hygiene measures. To date, only limited data are available on MPXV surface stability. Here, we evaluate the stability of infectious MPXV on stainless steel stored at different temperatures, while using different interfering substances to mimic environmental contamination. MPXV persistence increased with decreasing temperature. Additionally, we were able to show that MPXV could efficiently be inactivated by alcohol- and aldehyde-based surface disinfectants. These findings underline the stability of MPXV on inanimate surfaces and support the recommendations to use alcohol-based disinfectants as prevention measures or in outbreak situations.


Asunto(s)
Desinfectantes , Monkeypox virus , Desinfectantes/farmacología , Etanol , Temperatura , Aldehídos
18.
Emerg Infect Dis ; 29(1): 189-192, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36394568

RESUMEN

Increasing nonzoonotic human monkeypox virus (MPXV) infections urge reevaluation of inactivation strategies. We demonstrate efficient inactivation of MPXV by 2 World Health Organization‒recommended alcohol-based hand rub solutions. When compared with other (re)emerging enveloped viruses, MPXV displayed the greatest stability. Our results support rigorous adherence to use of alcohol-based disinfectants.


Asunto(s)
Desinfectantes , Mpox , Virus , Humanos , Monkeypox virus , Desinfectantes/farmacología , Etanol , Mpox/epidemiología , Mpox/prevención & control , 2-Propanol , Organización Mundial de la Salud
19.
Eur J Immunol ; 52(3): 472-483, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34843107

RESUMEN

Unconventional T cells (UTCs) are a heterogeneous group of T cells that typically exhibit rapid responses toward specific antigens from pathogens. Chronic hepatitis C virus (HCV) infection causes dysfunction of several subsets of UTCs. This altered phenotype and function of UTCs can persist over time even after direct-acting antiviral (DAA)-mediated clearance of chronic HCV. However, it is less clear if and how UTCs respond in acute, symptomatic HCV infection, a rare clinical condition, and if rapid DAA treatment of such patients reverses the caused perturbations within UTCs. Here, we comprehensively analyzed the phenotype and reinvigoration capacity of three major UTC populations, mucosal-associated invariant T (MAIT) cells, γδ T cells, and CD4 and CD8 double-negative αß T cells (DNT cells) before, during, and after DAA-mediated clearance of acute symptomatic HCV infection. Furthermore, MAIT cell functionality was systematically studied. We observed a reduced frequency of MAIT cells. However, remaining cells presented with a near-to-normal phenotype in acute infection, which contrasted with a significant dysfunction upon stimulation that was not restored after viral clearance. Notably, DNT and γδ T cells displayed a strong activation ex-vivo in acute HCV infection, which subsequently normalized during the treatment. In addition, DNT cell activation was specifically associated with liver inflammation and inflammatory cytokines. Altogether, these data provide evidence that UTCs respond in a cell type-specific manner during symptomatic HCV infection. However, even if early treatment is initiated, long-lasting imprints within UTCs remain over time.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Células T Invariantes Asociadas a Mucosa , Antivirales/uso terapéutico , Linfocitos T CD8-positivos , Hepacivirus , Hepatitis C/tratamiento farmacológico , Humanos
20.
J Med Virol ; 95(12): e29312, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38100621

RESUMEN

For the prevention of infectious diseases, knowledge about potential transmission routes is essential. Pathogens can be transmitted directly (i.e. respiratory droplets, hand-to-hand contact) or indirectly via contaminated surfaces (fomites). In particular, frequently touched objects/surfaces may serve as transmission vehicles for different clinically relevant bacterial, fungal, and viral pathogens. Banknotes and coins offer ample surface area and are frequently exchanged between individuals. Consequently, many concerns have been raised in the recent past, that banknotes and coins could serve as vectors for the transmission of disease-causing microorganisms. This review summarizes the latest research on the potential of paper currency and coins to serve as sources of pathogenic viral, bacterial, and fungal agents. In contrast to the current perception of banknotes and coins as important transmission vehicles, current evidence suggests, that banknotes and coins do not pose a particular risk of pathogen infection for the public.


Asunto(s)
Fómites , Numismática , Humanos , Bacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA