Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; : e202401657, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39005108

RESUMEN

A series of new luminescent bimetallic platinum(II) complexes with stimuli-responsive flexible Lewis pair (FlexLP) ligands are described. The FlexLP ligands consist of a dimesitylboron Lewis acid and diphenylphosphine oxide Lewis base which are in equilibrium between the unbound open form and the Lewis adduct, controlled by the hydrogen bond donating strength of the solvent. Spectroscopic techniques and density functional theory (DFT) calculations were used to interpret the photophysics of the platinum(II) complexes. All complexes exhibit tunable absorption in the region of 300-500 nm and green to orange photoluminescence, depending on the ratio of weak (THF) to strong (MeOH) hydrogen bond donating solvent employed. Spectroscopic and computational data shows that phosphine and peripheral acetylide ligands on the platinum(II) centers have limited influence on the emission energy, indicating the emission originates from the FlexLP-dominated fluorescence. Using time-resolved transient absorption spectroscopy it is shown that the complexes undergo intersystem crossing (ISC) to the triplet-excited state upon photoexcitation, and the ISC efficiency is affected by the peripheral acetylide ligands. The triplet-excited state lifetime can also be manipulated by the state of the FlexLP ligand, with the closed form complexes having longer lifetimes than the open form complexes.

2.
Inorg Chem ; 62(33): 13662-13671, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37555810

RESUMEN

A series of six new rhenium(I) tricarbonyl complexes [Re(CO)3(N-N)Br] bearing sulfur-bridged dipyridyl (N-N) ligands with three different oxidation states (sulfide (S), sulfoxide (SO), and sulfone (SO2)) are described. Spectroscopic studies show that changing the oxidation state of the ligands influences the photophysical properties of the complexes, with complexes 3 and 6 containing the sulfone ligand exhibiting a lower energy MLCT absorption band tailing into the visible region. Solution-state emission measurements show that these complexes exhibit readily tunable emission energies from 480 to 610 nm, depending on the oxidation state of the sulfur bridge and the presence of substituents on the pyridyl rings. Solid-state emission measurements show that the emission is significantly red-shifted upon oxidation of the sulfur bridge to sulfone with enhanced photoluminescence quantum yield.

3.
Bioorg Med Chem ; 27(2): 375-382, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30579801

RESUMEN

Malignant neoplasms are one of the leading causes of death worldwide and hematologic malignancies, including acute leukemia (AL) is one of the most relevant cancer types. Current available chemotherapeutics are associated with high morbidity and mortality rates, therefore, the search for new molecules with antitumor activity, specific and selective for neoplastic cells, became a great challenge for researchers in the oncology field. As pyrazolines stand out in the literature for their great variety of biological activities, the aim of this study was to synthesize and evaluate the antileukemic activity of five new pyrazoline derivatives. All pyrazolines showed adequate physicochemical properties for a good oral bioavailability. The two unpublished and most effective pyrazoline derivatives have been selected for further experiments. These compounds are highly selective for leukemic cells when compared to non-neoplastic cells and did not cause lysis on human red blood cells. Additionally, selected pyrazolines induced cell cycle arrest at G0/G1 phase and decreased cell proliferation marker KI67. Apoptotic cell death induced by selected pyrazolines was confirmed by morphological analysis, assessment of phosphatidylserine residue exposure and DNA fragmentation. Several factors indicate that both intrinsic and extrinsic apoptosis occurred. These were: increased FasR expression; the predominance of Bax in relation to Bcl-2; the loss of mitochondrial membrane potential; AIF release; decreased expression of survivin (an antiapoptotic protein); and the activation of caspase-3. The selected pyrazolines were also found to be cytotoxic against neoplastic cells collected from the peripheral blood and bone marrow of patients with different subtypes of acute leukemia.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Pirazoles/farmacología , Enfermedad Aguda , Antineoplásicos/síntesis química , Antineoplásicos/química , Factor Inductor de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucemia/tratamiento farmacológico , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Pirazoles/síntesis química , Pirazoles/química , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Survivin/metabolismo , Proteína X Asociada a bcl-2/metabolismo
4.
Dalton Trans ; 51(3): 1008-1018, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34935838

RESUMEN

Speeding up the phosphorescence channel in luminescent copper(I) complexes has been extremely challenging due to the copper atoms relatively low spin-orbit coupling constant compared to heavier metals such as iridium. Here, we report the synthesis and characterization of three mononuclear copper(I) complexes with diimines, triphenylphosphine, and iodide ligands to evaluate the effect of the copper-iodide (Cu-I) moiety into the phosphorescence decay pathway. Temperature-dependent photophysical studies revealed combined thermally activated delayed fluorescence and phosphorescence emission, with a phosphorescence decay rate of the order of 104 s-1. Density functional theory calculations indicate very high spin-orbit coupling matrix elements between the low-lying states of these complexes. Compared to the classical [Cu(phen)(POP)]+, our results demonstrate that Cu-I is a versatile moiety to speed up the phosphorescence decay pathway in about one order of magnitude, and it can be prepared by a simplified synthetic route with few synthetic steps. Furthermore, the SOC matrix elements and the phosphorescence decay rates of these complexes are comparable to those of extensively applied coordination complexes based on heavier metals, making them a promising alternative as active layers of organic light-emitting diodes.

5.
Mater Sci Eng C Mater Biol Appl ; 105: 110051, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31546341

RESUMEN

We describe herein a chitosan nanocarrier for drug delivery applications obtained through the self-assembly of carboxymethyl-hexanoyl chitosan and dodecyl sulfate (CHC-SDS). Nanocapsules with spherical morphology were obtained in phosphate buffer at pH 7.4. These CHC-SDS nanocapsules showed no toxicity toward Jurkat cells (acute lymphoblastic leukemia) and were used to encapsulate a new pyrazoline (H3TM04) with antileukemia activity. The samples were characterized by dynamic light scattering (DLS) and Laser Doppler Micro-Electrophoresis. The encapsulation efficiency was higher than 96% (293.6 µg mL-1) and the H3TM04-loaded nanocapsules (CHC-SDS-H) had a negative surface charge (-29.8 ±â€¯0.7 mV) and hydrodynamic radius of around 84 nm. For the first time, CHC-SDS-H were formed and the antitumoral cancer activity was proved. The in vitro assays showed the controlled release of H3TM04 from the CHC-SDS-H nanocapsules in phosphate buffer pH 7.4. The H3TM04 release data were described by the power law model, indicating that H3TM04 delivery occurred via an erosion mechanism. The cytotoxicity assays with Jurkat and K-562 cells (acute myeloid leukemia) demonstrated that the CHC-SDS-H nanocapsule decreases the half maximal inhibitory concentration (IC50). The study showed that CHC-SDS nanocapsules represent a promising nanocarrier for pyrazoline derivates that could be applied in leukemia therapy.


Asunto(s)
Antineoplásicos , Portadores de Fármacos , Leucemia/tratamiento farmacológico , Nanopartículas , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Quitosano/análogos & derivados , Quitosano/química , Quitosano/farmacocinética , Quitosano/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Humanos , Células Jurkat , Células K562 , Leucemia/metabolismo , Leucemia/patología , Nanopartículas/química , Nanopartículas/uso terapéutico , Dodecil Sulfato de Sodio/química , Dodecil Sulfato de Sodio/farmacocinética , Dodecil Sulfato de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA