Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070521

RESUMEN

An effective strategy is highly desirable for preventing acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Thioredoxin-1 (Trx), a redox-active protein that has anti-oxidative and anti-inflammatory properties, would be a candidate for this but its short half-life limits its clinical application. In this study, we examined the renoprotective effect of long-acting Trx that is comprised of human albumin and Trx (HSA-Trx) against AKI to CKD transition. AKI to CKD mice were created by renal ischemia-reperfusion (IR). From day 1 to day 14 after renal IR, the recovery of renal function was accelerated by HSA-Trx administration. On day 14, HSA-Trx reduced renal fibrosis compared with PBS treatment. At the early phase of fibrogenesis (day 7), HSA-Trx treatment suppressed renal oxidative stress, pro-inflammatory cytokine production and macrophage infiltration, thus ameliorating tubular injury and fibrosis. In addition, HSA-Trx treatment inhibited G2/M cell cycle arrest and apoptosis in renal tubular cells. While renal Trx protein levels were decreased after renal IR, the levels were recovered by HSA-Trx treatment. Together, HSA-Trx has potential for use in the treatment of AKI to CKD transition via its effects of modulating oxidative stress and inflammation.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Insuficiencia Renal Crónica/metabolismo , Tiorredoxinas/administración & dosificación , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Renal Crónica/patología , Tiorredoxinas/farmacología
2.
Toxins (Basel) ; 15(3)2023 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-36977070

RESUMEN

Fat atrophy and adipose tissue inflammation can cause the pathogenesis of metabolic symptoms in chronic kidney disease (CKD). During CKD, the serum levels of advanced oxidation protein products (AOPPs) are elevated. However, the relationship between fat atrophy/adipose tissue inflammation and AOPPs has remained unknown. The purpose of this study was to investigate the involvement of AOPPs, which are known as uremic toxins, in adipose tissue inflammation and to establish the underlying molecular mechanism. In vitro studies involved co-culturing mouse-derived adipocytes (differentiated 3T3-L1) and macrophages (RAW264.7). In vivo studies were performed using adenine-induced CKD mice and AOPP-overloaded mice. Fat atrophy, macrophage infiltration and increased AOPP activity in adipose tissue were identified in adenine-induced CKD mice. AOPPs induced MCP-1 expression in differentiated 3T3-L1 adipocytes via ROS production. However, AOPP-induced ROS production was suppressed by the presence of NADPH oxidase inhibitors and the scavengers of mitochondria-derived ROS. A co-culturing system showed AOPPs induced macrophage migration to adipocytes. AOPPs also up-regulated TNF-α expression by polarizing macrophages to an M1-type polarity, and then induced macrophage-mediated adipose inflammation. In vitro data was supported by experiments using AOPP-overloaded mice. AOPPs contribute to macrophage-mediated adipose inflammation and constitute a potential new therapeutic target for adipose inflammation associated with CKD.


Asunto(s)
Productos Avanzados de Oxidación de Proteínas , Insuficiencia Renal Crónica , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Activación de Macrófagos , Inflamación/metabolismo , Insuficiencia Renal Crónica/metabolismo , Obesidad , Riñón/metabolismo
3.
Toxins (Basel) ; 13(12)2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34941746

RESUMEN

Activation of mTORC1 (mechanistic target of rapamycin complex 1) in renal tissue has been reported in chronic kidney disease (CKD)-induced renal fibrosis. However, the molecular mechanisms responsible for activating mTORC1 in CKD pathology are not well understood. The purpose of this study was to identify the uremic toxin involved in mTORC1-induced renal fibrosis. Among the seven protein-bound uremic toxins, only indoxyl sulfate (IS) caused significant activation of mTORC1 in human kidney 2 cells (HK-2 cells). This IS-induced mTORC1 activation was inhibited in the presence of an organic anion transporter inhibitor, a NADPH oxidase inhibitor, and an antioxidant. IS also induced epithelial-mesenchymal transition of tubular epithelial cells (HK-2 cells), differentiation of fibroblasts into myofibroblasts (NRK-49F cells), and inflammatory response of macrophages (THP-1 cells), which are associated with renal fibrosis, and these effects were inhibited in the presence of rapamycin (mTORC1 inhibitor). In in vivo experiments, IS overload was found to activate mTORC1 in the mouse kidney. The administration of AST-120 or rapamycin targeted to IS or mTORC1 ameliorated renal fibrosis in Adenine-induced CKD mice. The findings reported herein indicate that IS activates mTORC1, which then contributes to renal fibrosis. Therapeutic interventions targeting IS and mTORC1 could be effective against renal fibrosis in CKD.


Asunto(s)
Fibrosis/inducido químicamente , Indicán/farmacología , Enfermedades Renales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/farmacología , NADPH Oxidasas/metabolismo , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Línea Celular , Células Epiteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Túbulos Renales/citología , Macrófagos/efectos de los fármacos , NADPH Oxidasas/genética , Ornitina-Oxo-Ácido Transaminasa/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
4.
J Cachexia Sarcopenia Muscle ; 12(6): 1832-1847, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34599649

RESUMEN

BACKGROUND: Sarcopenia with chronic kidney disease (CKD) progression is associated with life prognosis. Oxidative stress has attracted interest as a trigger for causing CKD-related muscular atrophy. Advanced oxidation protein products (AOPPs), a uraemic toxin, are known to increase oxidative stress. However, the role of AOPPs on CKD-induced muscle atrophy remains unclear. METHODS: In a retrospective case-control clinical study, we evaluated the relationship between serum AOPPs levels and muscle strength in haemodialysis patients with sarcopenia (n = 26, mean age ± SEM: 78.5 ± 1.4 years for male patients; n = 22, mean age ± SEM: 79.1 ± 1.5 for female patients), pre-sarcopenia (n = 12, mean age ± SEM: 73.8 ± 2.0 years for male patients; n = 4, mean age ± SEM: 74.3 ± 4.1 for female patients) or without sarcopenia (n = 12, mean age ± SEM: 71.3 ± 1.6 years for male patients; n = 7, mean age ± SEM: 77.7 ± 1.6 for female ). The molecular mechanism responsible for the AOPPs-induced muscle atrophy was investigated by using 5/6-nephrectomized CKD mice, AOPPs-overloaded mice, and C2C12 mouse myoblast cells. RESULTS: The haemodialysis patients with sarcopenia showed higher serum AOPPs levels as compared with the patients without sarcopenia. The serum AOPPs levels showed a negative correlation with grip strength (P < 0.01 for male patients, P < 0.01 for female patients) and skeletal muscle index (P < 0.01 for male patients). Serum AOPPs levels showed a positive correlation with cysteinylated albumin (Cys-albumin), a marker of oxidative stress (r2  = 0.398, P < 0.01). In the gastrocnemius of CKD mice, muscle AOPPs levels were also increased, and it showed a positive correlation with atrogin-1 (r2  = 0.538, P < 0.01) and myostatin expression (r2  = 0.421, P < 0.05), but a negative correlation with PGC-1α expression (r2  = 0.405, P < 0.05). Using C2C12 cells, AOPPs increased atrogin-1 and myostatin expression through the production of reactive oxygen species via CD36/NADPH oxidase pathway, and decreased myotube formation. AOPPs also induced mitochondrial dysfunction. In the AOPPs-overloaded mice showed that decreasing running time and hanging time accompanied by increasing AOPPs levels and decreasing cross-sectional area in gastrocnemius. CONCLUSIONS: Advanced oxidation protein products contribute to CKD-induced sarcopenia, suggesting that AOPPs or its downstream signalling pathway could be a therapeutic target for the treatment of CKD-induced sarcopenia. Serum AOPPs or Cys-albumin levels could be a new diagnostic marker for sarcopenia in CKD.


Asunto(s)
Insuficiencia Renal Crónica , Sarcopenia , Productos Avanzados de Oxidación de Proteínas/metabolismo , Animales , Antígenos CD36 , Femenino , Humanos , Masculino , Ratones , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Oxidorreductasas , Insuficiencia Renal Crónica/complicaciones , Estudios Retrospectivos , Sarcopenia/etiología
5.
Toxins (Basel) ; 12(8)2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764271

RESUMEN

Adipose tissue inflammation appears to be a risk factor for the progression of chronic kidney disease (CKD), but the effect of CKD on adipose tissue inflammation is poorly understood. The purpose of this study was to clarify the involvement of uremic toxins (indoxyl sulfate (IS), 3-indoleacetic acid, p-cresyl sulfate and kynurenic acid) on CKD-induced adipose tissue inflammation. IS induces monocyte chemoattractant protein-1 (MCP-1) expression and reactive oxygen species (ROS) production in the differentiated 3T3L-1 adipocyte. An organic anion transporter (OAT) inhibitor, an NADPH oxidase inhibitor or an antioxidant suppresses the IS-induced MCP-1 expression and ROS production, suggesting the OAT/NADPH oxidase/ROS pathway is involved in the action of IS. Co-culturing 3T3L-1 adipocytes and mouse macrophage cells showed incubating adipocytes with IS increased macrophage infiltration. An IS-overload in healthy mice increased IS levels, oxidative stress and MCP-1 expression in epididymal adipose tissue compared to unloaded mice. Using 5/6-nephrectomized mice, the administration of AST-120 suppressed oxidative stress and the expression of MCP-1, F4/80 and TNF-α in epididymal adipose tissue. These collective data suggest IS could be a therapeutic target for the CKD-related inflammatory response in adipose tissue, and that AST-120 could be useful for the treatment of IS-induced adipose tissue inflammation.


Asunto(s)
Tejido Adiposo/metabolismo , Indicán/metabolismo , Inflamación/metabolismo , NADPH Oxidasas/metabolismo , Insuficiencia Renal Crónica/metabolismo , Células 3T3-L1 , Tejido Adiposo/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Proteínas de Unión al Calcio/metabolismo , Carbono/farmacología , Carbono/uso terapéutico , Quimiocina CCL2/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo/efectos de los fármacos , Óxidos/farmacología , Óxidos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo
6.
Kidney360 ; 1(8): 781-796, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35372949

RESUMEN

Background: Renal proximal tubulopathy plays a crucial role in kidney disease, but its molecular mechanism is incompletely understood. Because proximal tubular cells consume a lot of energy during reabsorption, the relationship between fatty acids (FAs) and proximal tubulopathy has been attracting attention. The purpose of this study is to investigate the association between change in renal FA composition and tubulopathy. Methods: Mice with cisplatin-induced nephrotoxicity were used as a model of AKI and 5/6-nephrectomized mice were used as a model of CKD. Renal FA composition in mice was measured by GC-MS. Human tubular epithelial cells (HK-2 cells) were used for in vitro studies. Results: In kidneys of AKI mice, increased stearic acid (C18:0) and decreased palmitic acid (C16:0) were observed, accompanied by increased expression of the long-chain FA elongase Elovl6. Similar results were also obtained in CKD mice. We show that C18:0 has higher tubular toxicity than C16:0 via induction of ER stress. Using adenovirus-expressing Elovl6 or siRNA for Elovl6 in HK-2 cells, we demonstrated that increased Elovl6 expression contributes to tubulopathy via increasing C18:0. Elovl6 knockout suppressed the increased serum creatinine levels, renal ER stress, and inflammation that would usually result after 5/6 nephrectomy. Advanced oxidation protein products (AOPPs), specifically an oxidized albumin, was found to induce Elovl6 via the mTORC1/SREBP1 pathway. Conclusions: AOPPs may contribute to renal tubulopathy via perturbation of renal FAs through induction of Elovl6. The perturbation of renal FAs induced by the AOPPs-Elovl6 system could be a potential target for the treatment of tubulopathy.


Asunto(s)
Productos Avanzados de Oxidación de Proteínas , Ácidos Grasos , Acetiltransferasas/genética , Productos Avanzados de Oxidación de Proteínas/metabolismo , Animales , Elongasas de Ácidos Grasos , Ácidos Grasos/metabolismo , Riñón/metabolismo , Ratones
7.
Sci Rep ; 9(1): 5958, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30976020

RESUMEN

Since the propagation of plant viruses depends on various host susceptibility factors, deficiency in them can prevent viral infection in cultivated and model plants. Recently, we identified the susceptibility factor Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana, and revealed that EXA1-mediated resistance was effective against three potexviruses. Although EXA1 homolog genes are found in tomato and rice, little is known about which viruses depend on EXA1 for their infection capability and whether the function of EXA1 homologs in viral infection is conserved across multiple plant species, including crops. To address these questions, we generated knockdown mutants using virus-induced gene silencing in two Solanaceae species, Nicotiana benthamiana and tomato. In N. benthamiana, silencing of an EXA1 homolog significantly compromised the accumulation of potexviruses and a lolavirus, a close relative of potexviruses, whereas transient expression of EXA1 homologs from tomato and rice complemented viral infection. EXA1 dependency for potexviral infection was also conserved in tomato. These results indicate that EXA1 is necessary for effective accumulation of potexviruses and a lolavirus, and that the function of EXA1 in viral infection is conserved among diverse plant species.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Nicotiana/virología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Potexvirus/fisiología , Solanum lycopersicum/virología , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA