Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Genes Dev ; 31(5): 463-480, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28356341

RESUMEN

In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the Hjurp and Cenpa promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an "epigenetic addiction" to the HJURP chaperone represents an Achilles' heel in p53-deficient transformed cells.


Asunto(s)
Autoantígenos/metabolismo , Transformación Celular Neoplásica/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes p53/genética , Oncogenes/genética , Secuencias de Aminoácidos/genética , Animales , Autoantígenos/genética , Línea Celular , Células Cultivadas , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Proteínas de Unión al ADN/genética , Femenino , Eliminación de Gen , Inestabilidad Genómica/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Modelos Animales
2.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834388

RESUMEN

Mice with a constitutive increase in p53 activity exhibited features of dyskeratosis congenita (DC), a bone marrow failure syndrome (BMFS) caused by defective telomere maintenance. Further studies confirmed, in humans and mice, that germline mutations affecting TP53 or its regulator MDM4 may cause short telomeres and alter hematopoiesis, but also revealed features of Diamond-Blackfan anemia (DBA) or Fanconi anemia (FA), two BMFSs, respectively, caused by defects in ribosomal function or DNA repair. p53 downregulates several genes mutated in DC, either by binding to promoter sequences (DKC1) or indirectly via the DREAM repressor complex (RTEL1, DCLRE1B), and the p53-DREAM pathway represses 22 additional telomere-related genes. Interestingly, mutations in any DC-causal gene will cause telomere dysfunction and subsequent p53 activation to further promote the repression of p53-DREAM targets. Similarly, ribosomal dysfunction and DNA lesions cause p53 activation, and p53-DREAM targets include the DBA-causal gene TSR2, at least 9 FA-causal genes, and 38 other genes affecting ribosomes or the FA pathway. Furthermore, patients with BMFSs may exhibit brain abnormalities, and p53-DREAM represses 16 genes mutated in microcephaly or cerebellar hypoplasia. In sum, positive feedback loops and the repertoire of p53-DREAM targets likely contribute to partial phenotypic overlaps between BMFSs of distinct molecular origins.


Asunto(s)
Anemia de Diamond-Blackfan , Disqueratosis Congénita , Anemia de Fanconi , Humanos , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Trastornos de Fallo de la Médula Ósea , Anemia de Fanconi/genética , Anemia de Diamond-Blackfan/genética , Disqueratosis Congénita/genética , Telómero/genética , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogénicas/genética , Exodesoxirribonucleasas/genética
3.
Nat Rev Cancer ; 6(12): 909-23, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17128209

RESUMEN

Mutations in TP53, the gene that encodes the tumour suppressor p53, are found in 50% of human cancers, and increased levels of its negative regulators MDM2 and MDM4 (also known as MDMX) downregulate p53 function in many of the rest. Understanding p53 regulation remains a crucial goal to design broadly applicable anticancer strategies based on this pathway. This Review of in vitro studies, human tumour data and recent mouse models shows that p53 post-translational modifications have modulatory roles, and MDM2 and MDM4 have more profound roles for regulating p53. Importantly, MDM4 emerges as an independent target for drug development, as its inactivation is crucial for full p53 activation.


Asunto(s)
Proteínas Nucleares/metabolismo , Modificación Traduccional de las Proteínas , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Antineoplásicos/farmacología , Proteínas de Ciclo Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Mutación , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Transcripción Genética , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores
4.
PLoS Genet ; 8(6): e1002731, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22761580

RESUMEN

Evolutionary forces that shape regulatory networks remain poorly understood. In mammals, the Rb pathway is a classic example of species-specific gene regulation, as a germline mutation in one Rb allele promotes retinoblastoma in humans, but not in mice. Here we show that p53 transactivates the Retinoblastoma-like 2 (Rbl2) gene to produce p130 in murine, but not human, cells. We found intronic fuzzy tandem repeats containing perfect p53 response elements to be important for this regulation. We next identified two other murine genes regulated by p53 via fuzzy tandem repeats: Ncoa1 and Klhl26. The repeats are poorly conserved in evolution, and the p53-dependent regulation of the murine genes is lost in humans. Our results indicate a role for the rapid evolution of tandem repeats in shaping differences in p53 regulatory networks between mammalian species.


Asunto(s)
Regulación de la Expresión Génica , Proteína p130 Similar a la del Retinoblastoma , Retinoblastoma/genética , Secuencias Repetidas en Tándem/genética , Proteína p53 Supresora de Tumor , Animales , Células Cultivadas , Evolución Molecular , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Intrones/genética , Ratones , Mutación , Coactivador 1 de Receptor Nuclear/genética , Coactivador 1 de Receptor Nuclear/metabolismo , Elementos de Respuesta/genética , Proteína p130 Similar a la del Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Especificidad de la Especie , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Cancer Cell ; 9(4): 273-85, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16616333

RESUMEN

The mechanisms by which Mdm2 and Mdm4 (MdmX) regulate p53 remain controversial. We generated a mouse encoding p53 lacking the proline-rich domain (p53DeltaP). p53DeltaP exhibited increased sensitivity to Mdm2-dependent degradation and decreased transactivation capacity, correlating with deficient cell cycle arrest and reduced apoptotic responses. p53DeltaP induced lethality in Mdm2-/- embryos, but not in Mdm4-/- embryos. Mdm4 loss did not alter Mdm2 stability but significantly increased p53DeltaP transactivation to partially restore cycle control. In contrast, decreasing Mdm2 levels increased p53DeltaP levels without altering p53DeltaP transactivation. Thus, Mdm4 regulates p53 activity, while Mdm2 mainly controls p53 stability. Furthermore, Mdm4 loss dramatically improved p53DeltaP-mediated suppression of oncogene-induced tumors, emphasizing the importance of targeting Mdm4 in chemotherapies designed to activate p53.


Asunto(s)
Mutación/genética , Prolina/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Células Cultivadas , ADN/genética , Daño del ADN , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Transgénicos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Prolina/genética , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/deficiencia , Proteínas Proto-Oncogénicas c-mdm2/genética , Activación Transcripcional/genética , Proteína p53 Supresora de Tumor/química , Ubiquitina-Proteína Ligasas/genética
7.
Dis Model Mech ; 16(10)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37661832

RESUMEN

p53 (encoded by Trp53) is a tumor suppressor, but mouse models have revealed that increased p53 activity may cause bone marrow failure, likely through dimerization partner, RB-like, E2F4/E2F5 and MuvB (DREAM) complex-mediated gene repression. Here, we designed a systematic approach to identify p53-DREAM pathway targets, the repression of which might contribute to abnormal hematopoiesis. We used Gene Ontology analysis to study transcriptomic changes associated with bone marrow cell differentiation, then chromatin immunoprecipitation-sequencing (ChIP-seq) data to identify DREAM-bound promoters. We next created positional frequency matrices to identify evolutionary conserved sequence elements potentially bound by DREAM. The same approach was developed to find p53-DREAM targets associated with brain abnormalities, also observed in mice with increased p53 activity. Putative DREAM-binding sites were found for 151 candidate target genes, of which 106 are mutated in a blood or brain genetic disorder. Twenty-one DREAM-binding sites were tested and found to impact gene expression in luciferase assays, to notably regulate genes mutated in dyskeratosis congenita (Rtel1), Fanconi anemia (Fanca), Diamond-Blackfan anemia (Tsr2), primary microcephaly [Casc5 (or Knl1), Ncaph and Wdr62] and pontocerebellar hypoplasia (Toe1). These results provide clues on the role of the p53-DREAM pathway in regulating hematopoiesis and brain development, with implications for tumorigenesis.


Asunto(s)
Proteínas de Ciclo Celular , Proteína p53 Supresora de Tumor , Animales , Ratones , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regiones Promotoras Genéticas/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Mol Cell Biol ; 27(4): 1425-32, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17158931

RESUMEN

The stability and activity of tumor suppressor p53 are tightly regulated and partially depend on the p53 proline-rich domain (PRD). We recently analyzed mice expressing p53 with a deletion of the PRD (p53(DeltaP)). p53(DeltaP), a weak transactivator hypersensitive to Mdm2-mediated degradation, is unable to suppress oncogene-induced tumors. This phenotype could result from the loss of two motifs: Pin1 sites proposed to influence p53 stabilization and PXXP motifs proposed to mediate protein interactions. We investigated the importance of these motifs by generating mice encoding point mutations in the PRD. p53(TTAA) contains mutations suppressing all putative Pin1 sites in the PRD, while p53(AXXA) lacks PXXP motifs but retains one intact Pin1 site. Both mutant proteins accumulated in response to DNA damage, although the accumulation of p53(TTAA) was partially impaired. Importantly, p53(TTAA) and p53(AXXA) are efficient transactivators and potent suppressors of oncogene-induced tumors. Thus, Pin1 sites in the PRD may modulate p53 stability but do not significantly affect function. In addition, PXXP motifs are not essential, but structure dictated by the presence of prolines, PXXXXP motifs that may mediate protein interactions, and/or the length of this region appears to be functionally significant. These results may explain why the sequence of the p53 PRD is so variable in evolution.


Asunto(s)
Neoplasias/patología , Prolina/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis , Sitios de Unión , Ciclo Celular , Proliferación Celular , Transformación Celular Neoplásica , Secuencia Conservada , Daño del ADN , Fibroblastos/citología , Marcación de Gen , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación Puntual/genética , Unión Proteica , Estructura Terciaria de Proteína , Recombinación Genética/genética , Relación Estructura-Actividad , Activación Transcripcional/genética
10.
Cancers (Basel) ; 12(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33334014

RESUMEN

Understanding the mechanisms underlying cancer genome evolution has been a major goal for decades. A recent study combining live cell imaging and single-cell genome sequencing suggested that interwoven chromosome breakage-fusion-bridge cycles, micronucleation events and chromothripsis episodes drive cancer genome evolution. Here, I discuss the "interphase breakage model," suggested from prior fluorescent in situ hybridization data that led to a similar conclusion. In this model, the rapid genome evolution observed at early stages of gene amplification was proposed to result from the interweaving of an amplification mechanism (breakage-fusion-bridge cycles) and of a deletion mechanism (micronucleation and stitching of DNA fragments retained in the nucleus).

11.
Sci Adv ; 6(15): eaay3511, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32300648

RESUMEN

Dyskeratosis congenita is a cancer-prone inherited bone marrow failure syndrome caused by telomere dysfunction. A mouse model recently suggested that p53 regulates telomere metabolism, but the clinical relevance of this finding remained uncertain. Here, a germline missense mutation of MDM4, a negative regulator of p53, was found in a family with features suggestive of dyskeratosis congenita, e.g., bone marrow hypocellularity, short telomeres, tongue squamous cell carcinoma, and acute myeloid leukemia. Using a mouse model, we show that this mutation (p.T454M) leads to increased p53 activity, decreased telomere length, and bone marrow failure. Variations in p53 activity markedly altered the phenotype of Mdm4 mutant mice, suggesting an explanation for the variable expressivity of disease symptoms in the family. Our data indicate that a germline activation of the p53 pathway may cause telomere dysfunction and point to polymorphisms affecting this pathway as potential genetic modifiers of telomere biology and bone marrow function.


Asunto(s)
Proteínas de Ciclo Celular/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Proteínas Proto-Oncogénicas/genética , Homeostasis del Telómero/genética , Telómero/genética , Telómero/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Alelos , Sustitución de Aminoácidos , Animales , Médula Ósea/patología , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Familia , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Ratones , Ratones Noqueados , Linaje , Fenotipo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Síndrome , Acortamiento del Telómero
12.
Nucleic Acids Res ; 34(13): e92, 2006 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-16870721

RESUMEN

In recent years, tremendous insight has been gained on p53 regulation by targeting mutations at the p53 locus using homologous recombination in ES cells to generate mutant mice. Although informative, this approach is inefficient, slow and expensive. To facilitate targeting at the p53 locus, we developed an improved Recombinase-Mediated Cassette Exchange (RMCE) method. Our approach enables efficient targeting in ES cells to facilitate the production of mutant mice. But more importantly, the approach was Adapted for targeting in Somatic cells to Accelerate Phenotyping (RMCE-ASAP). We provide proof-of-concept for this at the p53 locus, by showing efficient targeting in fibroblasts, and rapid phenotypic read-out of a recessive mutation after a single exchange. RMCE-ASAP combines inverted heterologous recombinase target sites, a positive/negative selection marker that preserves the germline capacity of ES cells, and the power of mouse genetics. These general principles should make RMCE-ASAP applicable to any locus.


Asunto(s)
Embrión de Mamíferos/citología , Marcación de Gen/métodos , Genes p53 , Ratones/genética , Animales , Células Cultivadas , Integrasas , Fenotipo , Recombinación Genética , Células Madre , Proteínas Virales
14.
Cancers (Basel) ; 10(5)2018 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-29734785

RESUMEN

The p53 protein has been extensively studied for its capacity to prevent proliferation of cells with a damaged genome. Surprisingly, however, our recent analysis of mice expressing a hyperactive mutant p53 that lacks the C-terminal domain revealed that increased p53 activity may alter genome maintenance. We showed that p53 downregulates genes essential for telomere metabolism, DNA repair, and centromere structure and that a sustained p53 activity leads to phenotypic traits associated with dyskeratosis congenita and Fanconi anemia. This downregulation is largely conserved in human cells, which suggests that our findings could be relevant to better understand processes involved in bone marrow failure as well as aging and tumor suppression.

15.
Int J Biochem Cell Biol ; 39(7-8): 1476-82, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17499002

RESUMEN

The gene TP53, encoding transcription factor p53, is mutated or deleted in half of human cancers, demonstrating the crucial role of p53 in tumor suppression. Importantly, p53 inactivation in cancers can also result from the amplification/overexpression of its specific inhibitors MDM2 and MDM4 (also known as MDMX). The presence of wild-type p53 in those tumors with MDM2 or MDM4 overexpression stimulates the search for new therapeutic agents to selectively reactivate it. This short survey highlights recent insights into MDM2 and MDM4 regulatory functions and their implications for the design of future p53-based anticancer strategies. We now know that MDM2 and MDM4 inhibit p53 in distinct and complementary ways: MDM4 regulates p53 activity, while MDM2 mainly regulates p53 stability. Upon DNA damage, MDM2-dependent degradation of itself and MDM4 contribute significantly to p53 stabilization and activation. These and other data imply that the combined use of MDM2 and MDM4 antagonists in cancer cells expressing wild-type p53 should activate p53 more significantly than agents that only antagonize MDM2, resulting in more effective anti-tumor activity.


Asunto(s)
Antineoplásicos/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Antineoplásicos/farmacología , Proteínas de Ciclo Celular , Humanos , Datos de Secuencia Molecular , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Transducción de Señal
16.
Genes (Basel) ; 8(2)2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28230750

RESUMEN

MDM4, an essential negative regulator of the P53 tumor suppressor, is frequently overexpressed in cancer cells that harbor a wild-type P53. By a mechanism based on alternative splicing, the MDM4 gene generates two mutually exclusive isoforms: MDM4-FL, which encodes the full-length MDM4 protein, and a shorter splice variant called MDM4-S. Previous results suggested that the MDM4-S isoform could be an important driver of tumor development. In this short review, we discuss a recent set of data indicating that MDM4-S is more likely a passenger isoform during tumorigenesis and that targeting MDM4 splicing to prevent MDM4-FL protein expression appears as a promising strategy to reactivate p53 in cancer cells. The benefits and risks associated with this strategy are also discussed.

17.
Nat Commun ; 7: 11091, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27033104

RESUMEN

Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.


Asunto(s)
Reparación del ADN , Regulación hacia Abajo , Anemia de Fanconi/genética , Proteína p53 Supresora de Tumor/fisiología , Animales , Células Cultivadas , Factor de Transcripción E2F4/genética , Factor de Transcripción E2F4/metabolismo , Factor de Transcripción E2F4/fisiología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/fisiología , Humanos , Ratones , Células 3T3 NIH , Transcriptoma
18.
Cell Cycle ; 3(1): 19-21, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14657657

RESUMEN

Accurate duplication of genetic material is central to cell proliferation. In eukaryotes, S phase is tightly controlled during development. For example, initiation events occur at random sites in early embryos but later appear restricted to preferred DNA regions. Epigenetic changes depending on chromatin organization and/or availability of specific factors likely control origin choice. By using the dynamic molecular combing technology, coupled with specific labeling of neo-synthesized DNA and FISH, we recently demonstrated that the efficiency and spacing of initiation sites are still flexible in mammalian somatic cells, and strongly rely on nucleotide availability. In all conditions, initiation events appear confined to short AT-rich sequences previously identified as matrix attachment regions, which suggests a direct involvement of these features in origin specification. Functional relationships between matrix anchorage and origin selection are discussed.


Asunto(s)
Núcleo Celular/genética , Replicación del ADN/genética , Origen de Réplica/genética , Animales , Células CHO , Ciclo Celular/genética , Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Células Cultivadas , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Cricetinae , Cricetulus , Drosophila/genética , Humanos , Hibridación Fluorescente in Situ , Modelos Moleculares , Xenopus/genética
19.
Transcription ; 4(2): 67-71, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23412358

RESUMEN

The clinical importance of tumor suppressor p53 makes it one of the most studied transcription factors. A comparison of mammalian p53 transcriptional repertoires may help identify fundamental principles in genome evolution and better understand cancer processes. Here we summarize mechanisms underlying the divergence of mammalian p53 transcriptional repertoires, with an emphasis on the rapid evolution of fuzzy tandem repeats containing p53 response elements.


Asunto(s)
Proteína p53 Supresora de Tumor/metabolismo , Animales , Evolución Molecular , Humanos , Ratones , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Elementos de Respuesta , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Secuencias Repetidas en Tándem , Proteína p53 Supresora de Tumor/genética
20.
Cell Rep ; 3(6): 2046-58, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23770245

RESUMEN

Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53Δ31, a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis, hallmarks of syndromes caused by short telomeres. Indeed, p53Δ31/Δ31 mice had short telomeres and other phenotypic traits associated with the telomere disease dyskeratosis congenita and its severe variant the Hoyeraal-Hreidarsson syndrome. Heterozygous p53+/Δ31 mice were only mildly affected, but decreased levels of Mdm4, a negative regulator of p53, led to a dramatic aggravation of their symptoms. Importantly, several genes involved in telomere metabolism were downregulated in p53Δ31/Δ31 cells, including Dyskerin, Rtel1, and Tinf2, which are mutated in dyskeratosis congenita, and Terf1, which is implicated in aplastic anemia. Together, these data reveal that a truncating mutation can activate p53 and that p53 plays a major role in the regulation of telomere metabolism.


Asunto(s)
Proteínas de Unión a Telómeros/genética , Telómero/genética , Proteína p53 Supresora de Tumor/genética , Animales , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Masculino , Ratones , Ratones Mutantes , Mutación , Estructura Terciaria de Proteína , Síndrome , Telómero/metabolismo , Telómero/patología , Proteínas de Unión a Telómeros/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA