Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 158(2): 353-367, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036632

RESUMEN

Hermes is a member of the hAT transposon superfamily that has active representatives, including McClintock's archetypal Ac mobile genetic element, in many eukaryotic species. The crystal structure of the Hermes transposase-DNA complex reveals that Hermes forms an octameric ring organized as a tetramer of dimers. Although isolated dimers are active in vitro for all the chemical steps of transposition, only octamers are active in vivo. The octamer can provide not only multiple specific DNA-binding domains to recognize repeated subterminal sequences within the transposon ends, which are important for activity, but also multiple nonspecific DNA binding surfaces for target capture. The unusual assembly explains the basis of bipartite DNA recognition at hAT transposon ends, provides a rationale for transposon end asymmetry, and suggests how the avidity provided by multiple sites of interaction could allow a transposase to locate its transposon ends amidst a sea of chromosomal DNA.


Asunto(s)
Elementos Transponibles de ADN , Moscas Domésticas/enzimología , Transposasas/química , Animales , Secuencia de Bases , Cristalografía por Rayos X , Dimerización , Moscas Domésticas/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transposasas/genética , Transposasas/metabolismo
2.
Cell ; 139(4): 719-30, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19896182

RESUMEN

The licensing of eukaryotic DNA replication origins, which ensures once-per-cell-cycle replication, involves the loading of six related minichromosome maintenance proteins (Mcm2-7) into prereplicative complexes (pre-RCs). Mcm2-7 forms the core of the replicative DNA helicase, which is inactive in the pre-RC. The loading of Mcm2-7 onto DNA requires the origin recognition complex (ORC), Cdc6, and Cdt1, and depends on ATP. We have reconstituted Mcm2-7 loading with purified budding yeast proteins. Using biochemical approaches and electron microscopy, we show that single heptamers of Cdt1*Mcm2-7 are loaded cooperatively and result in association of stable, head-to-head Mcm2-7 double hexamers connected via their N-terminal rings. DNA runs through a central channel in the double hexamer, and, once loaded, Mcm2-7 can slide passively along double-stranded DNA. Our work has significant implications for understanding how eukaryotic DNA replication origins are chosen and licensed, how replisomes assemble during initiation, and how unwinding occurs during DNA replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/aislamiento & purificación , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , Componente 3 del Complejo de Mantenimiento de Minicromosoma , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Componente 6 del Complejo de Mantenimiento de Minicromosoma , Componente 7 del Complejo de Mantenimiento de Minicromosoma , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/aislamiento & purificación , Complejo de Reconocimiento del Origen/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
3.
IUBMB Life ; 72(8): 1622-1633, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32621393

RESUMEN

DNA recombination, replication, and repair are intrinsically interconnected processes. From viruses to humans, they are ubiquitous and essential to all life on Earth. Single-strand annealing homologous DNA recombination is a major mechanism for the repair of double-stranded DNA breaks. An exonuclease and an annealase work in tandem, forming a complex known as a two-component recombinase. Redß annealase and λ-exonuclease from phage lambda form the archetypal two-component recombinase complex. In this short review article, we highlight some of the in vitro studies that have led to our current understanding of the lambda recombinase system. We synthesize insights from more than half a century of research, summarizing the state of our current understanding. From this foundation, we identify the gaps in our knowledge and cast an eye forward to consider what the next 50 years of research may uncover.


Asunto(s)
Bacteriófago lambda/genética , Exonucleasas/genética , Recombinasas/genética , Recombinación Genética/genética , Bacteriófago lambda/enzimología , Roturas del ADN de Doble Cadena , Humanos , Proteínas Virales/genética
4.
Proc Natl Acad Sci U S A ; 113(19): 5287-92, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27114531

RESUMEN

Retinoschisin (RS1) is involved in cell-cell junctions in the retina, but is unique among known cell-adhesion proteins in that it is a soluble secreted protein. Loss-of-function mutations in RS1 lead to early vision impairment in young males, called X-linked retinoschisis. The disease is characterized by separation of inner retinal layers and disruption of synaptic signaling. Using cryo-electron microscopy, we report the structure at 4.1 Å, revealing double octamer rings not observed before. Each subunit is composed of a discoidin domain and a small N-terminal (RS1) domain. The RS1 domains occupy the centers of the rings, but are not required for ring formation and are less clearly defined, suggesting mobility. We determined the structure of the discoidin rings, consistent with known intramolecular and intermolecular disulfides. The interfaces internal to and between rings feature residues implicated in X-linked retinoschisis, indicating the importance of correct assembly. Based on this structure, we propose that RS1 couples neighboring membranes together through octamer-octamer contacts, perhaps modulated by interactions with other membrane components.


Asunto(s)
Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/ultraestructura , Adhesión Celular , Proteínas del Ojo/química , Proteínas del Ojo/ultraestructura , Uniones Intercelulares/ultraestructura , Retina/química , Retina/ultraestructura , Secuencia de Aminoácidos , Animales , Simulación por Computador , Dimerización , Uniones Intercelulares/química , Ratones , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Conformación Proteica
5.
EMBO J ; 30(9): 1830-40, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21441898

RESUMEN

During DNA replication, repetitive synthesis of discrete Okazaki fragments requires mechanisms that guarantee DNA polymerase, clamp, and primase proteins are present for every cycle. In Escherichia coli, this process proceeds through transfer of the lagging-strand polymerase from the ß sliding clamp left at a completed Okazaki fragment to a clamp assembled on a new RNA primer. These lagging-strand clamps are thought to be bound by the replisome from solution and loaded a new for every fragment. Here, we discuss a surprising, alternative lagging-strand synthesis mechanism: efficient replication in the absence of any clamps other than those assembled with the replisome. Using single-molecule experiments, we show that replication complexes pre-assembled on DNA support synthesis of multiple Okazaki fragments in the absence of excess ß clamps. The processivity of these replisomes, but not the number of synthesized Okazaki fragments, is dependent on the frequency of RNA-primer synthesis. These results broaden our understanding of lagging-strand synthesis and emphasize the stability of the replisome to continue synthesis without new clamps.


Asunto(s)
ADN Polimerasa III/deficiencia , Replicación del ADN/fisiología , ADN/biosíntesis , Escherichia coli/fisiología , Modelos Biológicos , Microscopía Electrónica , Microscopía Fluorescente
6.
Nucleic Acids Res ; 41(11): 5927-37, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23605044

RESUMEN

Infected cell protein 8 (ICP8) from herpes simplex virus 1 was first identified as a single-strand (ss) DNA-binding protein. It is essential for, and abundant during, viral replication. Studies in vitro have shown that ICP8 stimulates model replication reactions, catalyzes annealing of complementary ssDNAs and, in combination with UL12 exonuclease, will catalyze ssDNA annealing homologous recombination. DNA annealing and strand transfer occurs within large oligomeric filaments of ssDNA-bound ICP8. We present the first 3D reconstruction of a novel ICP8-ssDNA complex, which seems to be the basic unit of the DNA annealing machine. The reconstructed volume consists of two nonameric rings containing ssDNA stacked on top of each other, corresponding to a molecular weight of 2.3 MDa. Fitting of the ICP8 crystal structure suggests a mechanism for the annealing reaction catalyzed by ICP8, which is most likely a general mechanism for protein-driven DNA annealing.


Asunto(s)
ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Proteínas Virales/química , Cristalografía por Rayos X , ADN/química , ADN de Cadena Simple/ultraestructura , Modelos Moleculares
7.
PLoS Pathog ; 6(12): e1001226, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21187912

RESUMEN

Introduced in the 1950s, ethidium bromide (EB) is still used as an anti-trypanosomal drug for African cattle although its mechanism of killing has been unclear and controversial. EB has long been known to cause loss of the mitochondrial genome, named kinetoplast DNA (kDNA), a giant network of interlocked minicircles and maxicircles. However, the existence of viable parasites lacking kDNA (dyskinetoplastic) led many to think that kDNA loss could not be the mechanism of killing. When recent studies indicated that kDNA is indeed essential in bloodstream trypanosomes and that dyskinetoplastic cells survive only if they have a compensating mutation in the nuclear genome, we investigated the effect of EB on kDNA and its replication. We here report some remarkable effects of EB. Using EM and other techniques, we found that binding of EB to network minicircles is low, probably because of their association with proteins that prevent helix unwinding. In contrast, covalently-closed minicircles that had been released from the network for replication bind EB extensively, causing them, after isolation, to become highly supertwisted and to develop regions of left-handed Z-DNA (without EB, these circles are fully relaxed). In vivo, EB causes helix distortion of free minicircles, preventing replication initiation and resulting in kDNA loss and cell death. Unexpectedly, EB also kills dyskinetoplastic trypanosomes, lacking kDNA, by inhibiting nuclear replication. Since the effect on kDNA occurs at a >10-fold lower EB concentration than that on nuclear DNA, we conclude that minicircle replication initiation is likely EB's most vulnerable target, but the effect on nuclear replication may also contribute to cell killing.


Asunto(s)
ADN de Cinetoplasto/efectos de los fármacos , Etidio/farmacología , Trypanosoma/efectos de los fármacos , Antiprotozoarios/farmacología , Replicación del ADN/efectos de los fármacos , ADN de Forma Z , Genoma Mitocondrial/efectos de los fármacos , Conformación de Ácido Nucleico , Trypanosoma brucei brucei , Tripanosomiasis Africana
8.
Nat Commun ; 13(1): 5649, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163171

RESUMEN

The Redß protein of the bacteriophage λ red recombination system is a model annealase which catalyzes single-strand annealing homologous DNA recombination. Here we present the structure of a helical oligomeric annealing intermediate of Redß, consisting of N-terminal residues 1-177 bound to two complementary 27mer oligonucleotides, determined via cryogenic electron microscopy (cryo-EM) to a final resolution of 3.3 Å. The structure reveals a continuous binding groove which positions and stabilizes complementary DNA strands in a planar orientation to facilitate base pairing via a network of hydrogen bonding. Definition of the inter-subunit interface provides a structural basis for the propensity of Redß to oligomerize into functionally significant long helical filaments, a trait shared by most annealases. Our cryo-EM structure and molecular dynamics simulations suggest that residues 133-138 form a flexible loop which modulates access to the binding groove. More than half a century after its discovery, this combination of structural and computational observations has allowed us to propose molecular mechanisms for the actions of the model annealase Redß, a defining member of the Redß/RecT protein family.


Asunto(s)
Bacteriófago lambda , ADN de Cadena Simple , Bacteriófago lambda/química , ADN Complementario/metabolismo , ADN de Cadena Simple/metabolismo , Recombinación Homóloga , Oligonucleótidos/metabolismo
9.
J Biol Chem ; 285(10): 7056-66, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20042610

RESUMEN

Kinetoplast DNA, the trypanosome mitochondrial genome, is a network of interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Minicircles replicate after release from the network, and their progeny reattach. Remarkably, trypanosomes have six mitochondrial DNA helicases related to yeast PIF1 helicase. Here we report that one of the six, TbPIF1, functions in minicircle replication. RNA interference (RNAi) of TbPIF1 causes a growth defect and kinetoplast DNA loss. Minicircle replication intermediates decrease during RNAi, and there is an accumulation of multiply interlocked, covalently closed minicircle dimers (fraction U). In studying the significance of fraction U, we found that this species also accumulates during RNAi of mitochondrial topoisomerase II. These data indicate that one function of TbPIF1 is an involvement, together with topoisomerase II, in the segregation of minicircle progeny.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN de Cinetoplasto/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei , Adenosina Trifosfato/metabolismo , Animales , ADN Helicasas/genética , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Cinetoplasto/genética , Mitocondrias/enzimología , Mitocondrias/genética , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Proteínas Protozoarias/genética , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética
10.
Nat Commun ; 11(1): 6420, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339820

RESUMEN

In bacteria, transcription complexes stalled on DNA represent a major source of roadblocks for the DNA replication machinery that must be removed in order to prevent damaging collisions. Gram-positive bacteria contain a transcription factor HelD that is able to remove and recycle stalled complexes, but it was not known how it performed this function. Here, using single particle cryo-electron microscopy, we have determined the structures of Bacillus subtilis RNA polymerase (RNAP) elongation and HelD complexes, enabling analysis of the conformational changes that occur in RNAP driven by HelD interaction. HelD has a 2-armed structure which penetrates deep into the primary and secondary channels of RNA polymerase. One arm removes nucleic acids from the active site, and the other induces a large conformational change in the primary channel leading to removal and recycling of the stalled polymerase, representing a novel mechanism for recycling transcription complexes in bacteria.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Transcripción Genética , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/ultraestructura , Imagenología Tridimensional , Modelos Moleculares , Unión Proteica , Elongación de la Transcripción Genética
11.
Mol Biol Cell ; 14(8): 3427-36, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12925774

RESUMEN

Genetic evidence suggests that DNA polymerase epsilon (Pol epsilon) has a noncatalytic essential role during the early stages of DNA replication initiation. Herein, we report the cloning and characterization of the second largest subunit of Pol epsilon in fission yeast, called Dpb2. We demonstrate that Dpb2 is essential for cell viability and that a temperature-sensitive mutant of dpb2 arrests with a 1C DNA content, suggesting that Dpb2 is required for initiation of DNA replication. Using a chromatin immunoprecipitation assay, we show that Dpb2, binds preferentially to origin DNA at the beginning of S phase. We also show that the C terminus of Pol epsilon associates with origin DNA at the same time as Dpb2. We conclude that Dpb2 is an essential protein required for an early step in DNA replication. We propose that the primary function of Dpb2 is to facilitate assembly of the replicative complex at the start of S phase. These conclusions are based on the novel cell cycle arrest phenotype of the dpb2 mutant, on the previously uncharacterized binding of Dpb2 to replication origins, and on the observation that the essential function of Pol epsilon is not dependent on its DNA synthesis activity.


Asunto(s)
ADN Polimerasa II/metabolismo , Replicación del ADN , ADN de Hongos/biosíntesis , Fase S/genética , Schizosaccharomyces/enzimología , Secuencia de Bases , Supervivencia Celular , Datos de Secuencia Molecular , Mutagénesis , Subunidades de Proteína/metabolismo , Proteínas Recombinantes , Schizosaccharomyces/genética
12.
Nucleic Acids Res ; 31(18): e111, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12954787

RESUMEN

DNA nucleases (DNases) perform a wide variety of important cellular functions and are also very useful for research and in biotechnological applications. Due to the biological and technological importance of DNases and their use in a wide range of applications, DNase activity assays are essential. Traditional DNase assays employ radiolabeled DNA substrates and require separation of the products of the reaction from the unreacted substrate before quantification of enzyme activity. As a consequence, these methods are discontinuous. In this report, we describe a continuous DNase assay based on the differential fluorescence output of a DNA dye ligand called PicoGreen. The assay was developed to characterize a processive dsDNA exonuclease, lambda exonuclease. The assay appears to have general utility as it is also suitable for measuring the DNA digestion activities of a processive helicase/nuclease, RecBCD, a distributive exonuclease, T7 gene 6 exonuclease, and an endonuclease, DNaseI. The benefits of, and limitations to, the method are discussed.


Asunto(s)
Exodesoxirribonucleasas/metabolismo , Colorantes Fluorescentes/química , Unión Competitiva , ADN/metabolismo , Desoxirribonucleasas/metabolismo , Fluorescencia , Colorantes Fluorescentes/metabolismo , Fluorometría/métodos , Concentración de Iones de Hidrógeno , Compuestos Orgánicos , Reproducibilidad de los Resultados , Especificidad por Sustrato , Factores de Tiempo , Proteínas Virales
13.
Sci Rep ; 2: 640, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22962634

RESUMEN

SIRT1, a NAD(+)-dependent protein deacetylase, is an important regulator in cellular stress response and energy metabolism. While the list of SIRT1 substrates is growing, how the activity of SIRT1 is regulated remains unclear. We have previously reported that SIRT1 is activated by phosphorylation at a conserved Thr522 residue in response to environmental stress. Here we demonstrate that phosphorylation of Thr522 activates SIRT1 through modulation of its oligomeric status. We provide evidence that nonphosphorylated SIRT1 protein is aggregation-prone in vitro and in cultured cells. Conversely, phosphorylated SIRT1 protein is largely in the monomeric state and more active. Our findings reveal a novel mechanism for environmental regulation of SIRT1 activity, which may have important implications in understanding the molecular mechanism of stress response, cell survival, and aging.


Asunto(s)
Sirtuina 1/química , Animales , Supervivencia Celular , Activación Enzimática , Células HEK293 , Respuesta al Choque Térmico , Humanos , Ratones , Fosforilación , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína , Sirtuina 1/metabolismo , Sirtuina 1/ultraestructura , Proteína p53 Supresora de Tumor/química
14.
J Biol Chem ; 283(36): 24478-83, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18596042

RESUMEN

Werner syndrome is an inherited disease displaying a premature aging phenotype. The gene mutated in Werner syndrome encodes both a 3' --> 5' DNA helicase and a 3' --> 5' DNA exonuclease. Both WRN helicase and exonuclease preferentially utilize DNA substrates containing alternate secondary structures. By virtue of its ability to resolve such DNA structures, WRN is postulated to prevent the stalling and collapse of replication forks that encounter damaged DNA. Using electron microscopy, we visualized the binding of full-length WRN to DNA templates containing replication forks and Holliday junctions, intermediates observed during DNA replication and recombination, respectively. We show that both wild-type WRN and a helicase-defective mutant bind with exceptionally high specificity (>1000-fold) to DNA secondary structures at the replication fork and at Holliday junctions. Little or no binding is observed elsewhere on the DNA molecules. Calculations of the molecular weight of full-length WRN revealed that, in solution, WRN exists predominantly as a dimer. However, WRN bound to DNA is larger; the mass is consistent with that of a tetramer.


Asunto(s)
ADN Cruciforme/química , ADN Cruciforme/ultraestructura , Exodesoxirribonucleasas/química , RecQ Helicasas/química , Daño del ADN/genética , Replicación del ADN/genética , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , Dimerización , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Microscopía Electrónica , Mutación , Unión Proteica/genética , Estructura Cuaternaria de Proteína/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Recombinación Genética/genética , Síndrome de Werner/enzimología , Síndrome de Werner/genética , Helicasa del Síndrome de Werner
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA