Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Med Virol ; 95(12): e29315, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38115222

RESUMEN

Human papillomavirus (HPV) infections are a leading cause of viral-induced malignancies worldwide, with a prominent association with cervical and head and neck cancers. The pivotal role of HPV oncoproteins, E5, E6, and E7, in manipulating cellular events, which contribute to viral pathogenesis in various ways, has been extensively documented. This article reviews the influence of HPV oncoproteins on cellular signaling pathways within the host cell, shedding light on the underlying molecular mechanisms. A comprehensive understanding of these molecular alterations is essential for the development of targeted therapies and strategies to combat HPV-induced premalignancies and prevent their progress to cancer. Furthermore, this review underscores the intricate interplay between HPV oncoproteins and some of the most important cellular signaling pathways: Notch, Wnt/ß-catenin, MAPK, JAK/STAT, and PI3K AKT/mTOR. The treatment efficacies of the currently available inhibitors on these pathways in an HPV-positive context are also discussed. This review also highlights the importance of continued research to advance our knowledge and enhance therapeutic interventions for HPV-associated diseases.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/tratamiento farmacológico , Proteínas E7 de Papillomavirus
2.
J Med Virol ; 95(3): e28624, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36852660

RESUMEN

While a small proportion of high-risk (HR) alpha (α) human papillomaviruses (HPVs) is associated with numerous human malignancies, of which cervical cancer is the most prevalent, beta (ß) HPVs predominantly act as co-factors in skin carcinogenesis. A characteristic feature of both α- and ß-E6 oncoproteins is the presence of the LXXLL binding motif, which α-E6s utilize to form a complex with E6AP and which enables ß-E6s to interact with MAML1. Here we show that multiple α-E6 oncoproteins bind to MAML1 via the LXXLL binding motif and that this results in increased protein stability. Moreover, ß-E6 oncoprotein stability is also dependent on the interaction with MAML1. Additionally, in the absence of MAML1, endogenous HPV-8 E6 and HPV-18 E6 are rapidly degraded at the proteasome. Ablation of both E6AP and MAML1 leads to an even more profound downregulation of α-E6 protein expression, whereas this is not observed with ß-E6. This highly suggests that there is one cellular pool for most of ß-E6 that interacts solely with MAML1, whereas there are two cellular pools of HR α-E6, one forming a complex with MAML1 and the other interacting with E6AP. Furthermore, MAML1 induces HPV-8 E6 shuttling from the nucleus to the cytosolic fraction, while MAML1 interaction with HR E6 induces a drastic nuclear and membrane upregulation of E6. Interestingly, the HR α-E6/MAML1 complex does not affect targeting of some of the known HR E6 cellular substrates such as p53 and DLG1. However, MAML1 and E6AP joint co-expression with HR α-E6 leads to a significant increase in cellular proliferation, whereas silencing MAML1 decreases wound closure in HeLa cells. These results demonstrate that HR α-E6 interaction with MAML1 results in a stable form of E6, which likely modulates MAML1's normal cellular activities, one consequence of which being an increased proliferative capacity of HPV-transformed cancer cells. Thus, this study shows a novel function of the α-E6 oncoprotein and how it's activity might affect HPV-induced pathogenesis.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Células HeLa , Infecciones por Papillomavirus/complicaciones , Proteínas Oncogénicas Virales/genética , Proliferación Celular , Unión Proteica , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Transl Med ; 20(1): 231, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581584

RESUMEN

BACKGROUND: According to international guidelines, Human Papillomavirus (HPV) DNA tests represent a valid alternative to Pap Test for primary cervical cancer screening, provided that they guarantee balanced clinical sensitivity and specificity for cervical intraepithelial neoplasia grade 2 or more (CIN2+) lesions. The study aimed to assess whether HPV Selfy (Ulisse BioMed - Trieste, Italy), a full-genotyping HPV DNA test that detects and differentiates 14 high-risk HPV (HR-HPV) types, meets the criteria for primary cervical cancer screening described in the international guidelines, on clinician-collected as well as on self-collected samples. METHODS: For each participant woman, consecutively referring to Azienda Sanitaria Universitaria Giuliano Isontina (Trieste, Italy) and CRO-National Cancer Institute (Aviano, Italy) for the cervical cancer screening program, the following samples were tested: (a) a clinician-collected cervical specimen, analyzed with the reference test (Hybrid Capture®2 test, HC2) and HPV Selfy; and (b) a self-collected vaginal sample, analyzed with HPV Selfy. Enrolled women were also asked to fulfill a questionnaire about self-sampling acceptability. As required by guidelines, a non-inferiority test was conducted to compare the clinical performance of the test under evaluation with its reference test. RESULTS: HPV Selfy clinical sensitivity and specificity resulted non-inferior to those of HC2. By analysis of a total of 889 cervical liquid-based cytology samples from a screening population, of which 98 were from women with CIN2+, HPV Selfy showed relative sensitivity and specificity for CIN2+ of 0.98 and 1.00 respectively (non-inferiority score test: P = 0.01747 and P = 0.00414, respectively); the test reached adequate intra- and inter-laboratory reproducibility. Moreover, we demonstrated that the performance of HPV Selfy on self-collected vaginal samples was non-inferior to the performance obtained on clinician-collected cervical specimen (0.92 relative sensitivity and 0.97 relative specificity). Finally, through HPV Selfy genotyping, we were able to describe HPV types prevalence in the study population. CONCLUSIONS: HPV Selfy fulfills all the requirements of the international Meijer's guidelines and has been clinically validated for primary cervical cancer screening purposes. Moreover, HPV Selfy has also been validated for self-sampling according to VALHUDES guidelines. Therefore, at date, HPV Selfy is the only full-genotyping test validated both for screening purposes and for self-sampling. Trial registration ASUGI Trieste n. 16008/2018; CRO Aviano n.17149/2018.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Detección Precoz del Cáncer/métodos , Femenino , Genotipo , Humanos , Tamizaje Masivo , Papillomaviridae/genética , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/diagnóstico , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Neoplasias del Cuello Uterino/diagnóstico
4.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597772

RESUMEN

Cancer-causing human papillomavirus (HPV) E6 oncoproteins have a class I PDZ-binding motif (PBM) on their C termini, which play critical roles that are related to the HPV life cycle and HPV-induced malignancies. E6 oncoproteins use these PBMs to interact with, to target for proteasome-mediated degradation, a plethora of cellular substrates that contain PDZ domains and that are involved in the regulation of various cellular pathways. In this study, we show that both HPV-16 and HPV-18 E6 oncoproteins can interact with Na+/H+ exchange regulatory factor 2 (NHERF-2), a PDZ domain-containing protein, which among other cellular functions also behaves as a tumor suppressor regulating endothelial proliferation. The interaction between the E6 oncoproteins and NHERF-2 is PBM dependent and results in proteasome-mediated degradation of NHERF-2. We further confirmed this effect in cells derived from HPV-16- and HPV-18-positive cervical tumors, where we show that NHERF-2 protein turnover is increased in the presence of E6. Finally, our data indicate that E6-mediated NHERF-2 degradation results in p27 downregulation and cyclin D1 upregulation, leading to accelerated cellular proliferation. To our knowledge, this is the first report to demonstrate that E6 oncoproteins can stimulate cell proliferation by indirectly regulating p27 through targeting a PDZ domain-containing protein.IMPORTANCE This study links HPV-16 and HPV-18 E6 oncoproteins to the modulation of cellular proliferation. The PDZ domain-containing protein NHERF-2 is a tumor suppressor that has been shown to regulate endothelial proliferation; here, we demonstrate that NHERF-2 is targeted by HPV E6 for proteasome-mediated degradation. Interestingly, this indirectly affects p27, cyclin D1, and CDK4 protein levels and, consequently, affects cell proliferation. Hence, this study provides information that will improve our understanding of the molecular basis for HPV E6 function, and it also highlights the importance of the PDZ domain-containing protein NHERF-2 and its tumor-suppressive role in regulating cell proliferation.


Asunto(s)
Proteínas de Unión al ADN/genética , Interacciones Huésped-Patógeno/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Proteínas Oncogénicas Virales/genética , Fosfoproteínas/genética , Proteínas Represoras/genética , Intercambiadores de Sodio-Hidrógeno/genética , Sitios de Unión , Línea Celular Transformada , Proliferación Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/virología , Femenino , Regulación de la Expresión Génica , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidad , Papillomavirus Humano 18/metabolismo , Papillomavirus Humano 18/patogenicidad , Humanos , Proteínas Oncogénicas Virales/metabolismo , Dominios PDZ , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Fosfoproteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Proteínas Represoras/metabolismo , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología
5.
J Virol ; 91(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28100625

RESUMEN

Activation of signaling pathways ensuring cell growth is essential for the proliferative competence of human papillomavirus (HPV)-infected cells. Tyrosine kinases and phosphatases are key regulators of cellular growth control pathways. A recently identified potential cellular target of HPV E7 is the cytoplasmic protein tyrosine phosphatase PTPN14, which is a potential tumor suppressor and is linked to the control of the Hippo and Wnt/beta-catenin signaling pathways. In this study, we show that the E7 proteins of both high-risk and low-risk mucosal HPV types can interact with PTPN14. This interaction is independent of retinoblastoma protein (pRb) and involves residues in the carboxy-terminal region of E7. We also show that high-risk E7 induces proteasome-mediated degradation of PTPN14 in cells derived from cervical tumors. This degradation appears to be independent of cullin-1 or cullin-2 but most likely involves the UBR4/p600 ubiquitin ligase. The degree to which E7 downregulates PTPN14 would suggest that this interaction is important for the viral life cycle and potentially also for the development of malignancy. In support of this we find that overexpression of PTPN14 decreases the ability of HPV-16 E7 to cooperate with activated EJ-ras in primary cell transformation assays.IMPORTANCE This study links HPV E7 to the deregulation of protein tyrosine phosphatase signaling pathways. PTPN14 is classified as a potential tumor suppressor protein, and here we show that it is very susceptible to HPV E7-induced proteasome-mediated degradation. Intriguingly, this appears to use a mechanism that is different from that employed by E7 to target pRb. Therefore, this study has important implications for our understanding of the molecular basis for E7 function and also sheds important light on the potential role of PTPN14 as a tumor suppressor.


Asunto(s)
Papillomavirus Humano 16/enzimología , Proteínas E7 de Papillomavirus/fisiología , Neoplasias del Cuello Uterino/virología , Proteínas de Unión a Calmodulina/metabolismo , Transformación Celular Neoplásica , Proteínas del Citoesqueleto/metabolismo , Femenino , Células HeLa , Interacciones Huésped-Patógeno , Papillomavirus Humano 16/fisiología , Humanos , Proteínas E7 de Papillomavirus/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas , Ubiquitinación , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
7.
PLoS Pathog ; 12(9): e1005854, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27649450

RESUMEN

A subset of high-risk Human Papillomaviruses (HPVs) are the causative agents of a large number of human cancers, of which cervical is the most common. Two viral oncoproteins, E6 and E7, contribute directly towards the development and maintenance of malignancy. A characteristic feature of the E6 oncoproteins from cancer-causing HPV types is the presence of a PDZ binding motif (PBM) at its C-terminus, which confers interaction with cellular proteins harbouring PDZ domains. Here we show that this motif allows E6 interaction with Sorting Nexin 27 (SNX27), an essential component of endosomal recycling pathways. This interaction is highly conserved across E6 proteins from multiple high-risk HPV types and is mediated by a classical PBM-PDZ interaction but unlike many E6 targets, SNX27 is not targeted for degradation by E6. Rather, in HPV-18 positive cell lines the association of SNX27 with components of the retromer complex and the endocytic transport machinery is altered in an E6 PBM-dependent manner. Analysis of a SNX27 cargo, the glucose transporter GLUT1, reveals an E6-dependent maintenance of GLUT1 expression and alteration in its association with components of the endocytic transport machinery. Furthermore, knockdown of E6 in HPV-18 positive cervical cancer cells phenocopies the loss of SNX27, both in terms of GLUT1 expression levels and its vesicular localization, with a concomitant marked reduction in glucose uptake, whilst loss of SNX27 results in slower cell proliferation in low nutrient conditions. These results demonstrate that E6 interaction with SNX27 can alter the recycling of cargo molecules, one consequence of which is modulation of nutrient availability in HPV transformed tumour cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Papillomavirus Humano 18/fisiología , Proteínas Oncogénicas Virales/metabolismo , Nexinas de Clasificación/metabolismo , Neoplasias del Cuello Uterino/virología , Secuencia de Aminoácidos , Proteínas de Unión al ADN/genética , Endosomas/metabolismo , Femenino , Células HeLa , Humanos , Proteínas Oncogénicas Virales/genética , Dominios PDZ , Fosforilación , Unión Proteica , Transporte de Proteínas , Nexinas de Clasificación/genética
8.
J Virol ; 89(3): 1579-86, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25410862

RESUMEN

UNLABELLED: Previous studies have shown that the cancer-causing high-risk human papillomavirus (HPV) E6 oncoproteins have PDZ binding potential, an activity which is important for their ability to support the viral life cycle and to cooperate in the induction of malignancy. However, PDZ interactions are not constitutive, and they can be negatively regulated by phosphorylation within the E6 PDZ binding motif (PBM). In this study, we have investigated the differential regulation of the HPV E6 PBMs from diverse high-risk HPV types. We show that, depending on the HPV type, PDZ binding activity can be regulated by phosphorylation with protein kinase A (PKA) or AKT, which, in turn, inhibits PDZ recognition. Such regulation is highly conserved between E6 proteins derived from HPV-16, HPV-18, and HPV-58 while being somewhat weaker or absent from other types such as HPV-31, HPV-33, and HPV-51. In the case of HPV31, PKA phosphorylation occurs within the core of the E6 protein and has no effect on PDZ interactions, and this demonstrates a surprising degree of heterogeneity among the different high-risk HPV E6 oncoproteins in how they are regulated by different cellular signaling pathways. IMPORTANCE: This study demonstrated that the cancer-causing HPV E6 oncoproteins are all subject to posttranslational modification of their extreme C-terminal PDZ binding motifs through phosphorylation. However, the identities of the kinase are not the same for all HPV types. This demonstrates a very important divergence between these HPVs, and it suggests that changes in cell signaling pathways have different consequences for different high-risk virus infections and their associated malignancies.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas Oncogénicas/metabolismo , Dominios PDZ , Papillomaviridae/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Virales/metabolismo , Humanos , Fosforilación , Unión Proteica , Proteínas Quinasas/metabolismo
9.
Cells ; 13(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38920638

RESUMEN

Head and neck cancers rank as the sixth most prevalent cancers globally. In addition to traditional risk factors such as smoking and alcohol use, human papillomavirus (HPV) infections are becoming a significant causative agent of head and neck cancers, particularly among Western populations. Although HPV offers a significant survival benefit, the search for better biomarkers is still ongoing. In the current study, our objective was to investigate whether the expression levels of three PDZ-domain-containing proteins (SCRIB, NHERF2, and DLG1), known HPV E6 cellular substrates, influence the survival of HNSCC patients treated by primary surgery (n = 48). Samples were derived from oropharyngeal and oral cancers, and HPV presence was confirmed by PCR and p16 staining. Clinical and follow-up information was obtained from the hospital database and the Croatian Cancer registry up to November 2023. Survival was evaluated using the Kaplan-Meier method and Cox proportional hazard regression. The results were corroborated through the reanalysis of a comparable subset of TCGA cancer patients (n = 391). In conclusion, of the three targets studied, only SCRIB levels were found to be an independent predictor of survival in the Cox regression analysis, along with tumor stage. Further studies in a more typical Western population setting are needed since smoking and alcohol consumption are still prominent in the Croatian population, while the strongest association between survival and SCRIB levels was seen in HPV-negative cases.


Asunto(s)
Proteínas de la Membrana , Proteínas Supresoras de Tumor , Humanos , Masculino , Femenino , Pronóstico , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Persona de Mediana Edad , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/complicaciones , Papillomaviridae/genética , Anciano , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/virología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Biomarcadores de Tumor/metabolismo , Estimación de Kaplan-Meier , Adulto
10.
Viruses ; 15(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38005929

RESUMEN

Human papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (ß) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers. In contrast, ß-HPVs are predominantly associated with cutaneous infections and are commonly found on healthy skin. However, certain ß-types, notably HPV5 and HPV8, have been implicated in the development of non-melanoma skin cancers in immunocompromised individuals, highlighting their potential role in pathogenicity. In this review, we comprehensively analyze the similarities and differences between α- and ß-HPV E6 oncoproteins, one of the major drivers of viral replication and cellular transformation, and how these impact viral fitness and the capacity to induce malignancy. In particular, we compare the mechanisms these oncoproteins use to modulate common cellular processes-apoptosis, DNA damage repair, cell differentiation, and the immune response-further shedding light on their shared and distinct features, which enable them to replicate at divergent locations of the human body and cause different types of cancer.


Asunto(s)
Neoplasias , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Humanos , Proteínas Oncogénicas Virales/genética , Transformación Celular Neoplásica , Virus del Papiloma Humano , Papillomaviridae/genética
11.
Pathogens ; 12(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37623973

RESUMEN

Infection with human papillomaviruses (HPVs), in particular with HPV type 16, is now considered to be a key risk factor for the development of a subset of oropharyngeal squamous cell carcinomas (OPSCC) that show different epidemiological, clinical, and prognostic characteristics from HPV-negative (HPV-) OPSCCs. So far, extensive research efforts aiming to distinguish these two distinct entities have not identified specific biomarkers, nor led to different therapies. Previous research has shown that HPV16 E6 oncoprotein binds NHERF2, inducing its proteasomal degradation, and consequently increasing cell proliferation; we therefore aimed to investigate how this might be reflected in human histological samples. We analyzed NHERF2 expression patterns in HPV16-positive (HPV16+) and HPV- OPSCC samples, to investigate any potential differences in NHERF2 pattern. Interestingly, we observed a statistically significant decrease in NHERF2 levels in HPV16+ and poorly differentiated HPV- OPSCCs, compared with healthy tissue. Furthermore, we observed a significant reduction in the percentage of NHERF2 immunoreactive cancer cells in HPV16+ tumors, compared with well and moderately differentiated HPV- OPSCCs, suggesting the importance of 16E6's targeting of NHERF2 in HPV-driven oncogenesis in the head and neck area.

12.
J Virol ; 85(7): 3120-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21228227

RESUMEN

Human papillomavirus (HPV) E6 oncoproteins target many cellular proteins for ubiquitin-mediated proteasomal degradation. In the case of p53, this is mediated principally by the E6AP ubiquitin ligase. Several studies have reported that E6 can target certain of its substrates in an apparently E6AP-independent fashion and that several of these substrates vary in the degree to which they are degraded by E6 at different stages of malignancy. To more fully understand the regulation of the E6AP/E6 proteolytic targeting complex, we performed a mass spectroscopic analysis of HPV type 18 (HPV-18) E6 protein complexes and identified the HECT domain-containing ubiquitin ligase EDD as a new HPV-18 E6 binding partner. We show that EDD can interact independently with both E6 and E6AP. Furthermore, EDD appears to regulate E6AP expression levels independently of E6, and loss of EDD stimulates the proteolytic activity of the E6/E6AP complex. Conversely, higher levels of EDD expression protect a number of substrates from E6-induced degradation, partly as a consequence of lower levels of E6 and E6AP expression. Intriguingly, reduction in EDD expression levels in HPV-18-positive HeLa cells enhances cell resistance to apoptotic and growth arrest stimuli. These studies suggest that changes in the levels of EDD expression during different stages of the viral life cycle or during malignancy could have a profound effect upon the ability of E6 to target various substrates for proteolytic degradation and thereby directly influence the development of HPV-induced malignancy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Papillomavirus Humano 18/patogenicidad , Proteínas Oncogénicas Virales/metabolismo , Multimerización de Proteína , Ubiquitina-Proteína Ligasas/metabolismo , Células HeLa , Humanos , Espectrometría de Masas , Mapeo de Interacción de Proteínas
13.
Pathogens ; 11(9)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36145459

RESUMEN

Human papillomaviruses (HPVs) infect the dividing cells of human epithelia and hijack the cellular replication machinery to ensure their own propagation. In the effort to adapt the cell to suit their own reproductive needs, the virus changes a number of processes, amongst which is the ability of the cell to undergo programmed cell death. Viral infections, forced cell divisions and mutations, which accumulate as a result of uncontrolled proliferation, all trigger one of several cell death pathways. Here, we examine the mechanisms employed by HPVs to ensure the survival of infected cells manipulated into cell cycle progression and proliferation.

14.
Cancers (Basel) ; 13(17)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34503271

RESUMEN

The major causative agents of head and neck squamous cell carcinomas (HNSCCs) are either environmental factors, such as tobacco and alcohol consumption, or infection with oncogenic human papillomaviruses (HPVs). An important aspect of HPV-induced oncogenesis is the targeting by the E6 oncoprotein of PDZ domain-containing substrates for proteasomal destruction. Tumor suppressors DLG1 and SCRIB are two of the principal PDZ domain-containing E6 targets. Both have been shown to play critical roles in the regulation of cell growth and polarity and in maintaining the structural integrity of the epithelia. We investigated how modifications in the cellular localization and protein expression of DLG1 and SCRIB in HPV16-positive and HPV-negative histologic oropharyngeal squamous cell carcinomas (OPSCC) might reflect disease progression. HPV presence was determined by p16 staining and HPV genotyping. Whilst DLG1 expression levels did not differ markedly between HPV-negative and HPV16-positive OPSCCs, it appeared to be relocated from cell-cell contacts to the cytoplasm in most samples, regardless of HPV16 positivity. This indicates that alterations in DLG1 distribution could contribute to malignant progression in OPSCCs. Interestingly, SCRIB was also relocated from cell-cell contacts to the cytoplasm in the tumor samples in comparison with normal tissue, regardless of HPV16 status, but in addition there was an obvious reduction in SCRIB expression in higher grade tumors. Strikingly, loss of SCRIB was even more pronounced in HPV16-positive OPSCCs. These alterations in SCRIB levels may contribute to transformation and loss of tissue architecture in the process of carcinogenesis and could potentially serve as markers in the development of OPSCCs.

15.
Viruses ; 13(11)2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34835040

RESUMEN

Human papillomaviruses (HPVs), which are small, double-stranded, circular DNA viruses infecting human epithelial cells, are associated with various benign and malignant lesions of mucosa and skin. Intensive research on the oncogenic potential of HPVs started in the 1970s and spread across Europe, including Croatia, and worldwide. Nowadays, the causative role of a subset of oncogenic or high-risk (HR) HPV types, led by HPV-16 and HPV-18, of different anogenital and head and neck cancers is well accepted. Two major viral oncoproteins, E6 and E7, are directly involved in the development of HPV-related malignancies by targeting synergistically various cellular pathways involved in the regulation of cell cycle control, apoptosis, and cell polarity control networks as well as host immune response. This review is aimed at describing the key elements in HPV-related carcinogenesis and the advances in cancer prevention with reference to past and on-going research in Croatia.


Asunto(s)
Alphapapillomavirus/patogenicidad , Neoplasias/virología , Infecciones por Papillomavirus/virología , Alphapapillomavirus/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis , Epigénesis Genética , Humanos , Evasión Inmune , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/prevención & control , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/inmunología
16.
J Virol ; 83(19): 9863-74, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19640984

RESUMEN

The E6 oncoproteins from high-risk mucosotrophic human papillomaviruses (HPVs) target a range of cellular proteins for proteasome-mediated degradation. Apart from the tumor suppressor p53 and proapoptotic Bcl-2 family member Bak, many targets contain class 1 PDZ domains and are involved in cell junction stability and signaling. The targeting mechanism is considered to function by the E6 protein acting as an adaptor molecule linking a cellular ubiquitin ligase to the target protein. In each case, whether the target is the p53 tumor suppressor or a member of the group of PDZ domain-containing targets, this mechanism relies on a direct interaction between E6 and its cellular target. This study focuses on the impact of the HPV type 18 (HPV-18) E6*I protein on the stability of Akt, Dlg, MAGI-1, MAGI-2, and Scribble. We show that HPV-18 E6* expression can downregulate the expression levels of Akt, Dlg, and Scribble in the absence of full-length HPV-18 E6 protein. The reduction in Dlg levels by E6* is independent of transcription and does not require a direct interaction between the two proteins although the proteasome pathway is involved. Further, we provide evidence that activation of certain signal transduction pathways has a profound effect on the targeting of Dlg by E6* and suggest that high-risk HPV E6 oncoproteins can target certain substrates both directly and indirectly through the E6* proteins and may cooperate in their degradation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Genes p53 , Humanos , Microscopía Fluorescente/métodos , Modelos Biológicos , Datos de Secuencia Molecular , Membrana Mucosa/virología , Sistemas de Lectura Abierta , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismo , Riesgo , Homología de Secuencia de Ácido Nucleico
17.
Pathogens ; 9(2)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085533

RESUMEN

Human papillomavirus (HPV) E6 and E7 oncoproteins are critical for development and maintenance of the malignant phenotype in HPV-induced cancers. These two viral oncoproteins interfere with a plethora of cellular pathways, including the regulation of cell cycle and the control of apoptosis, which are critical in maintaining normal cellular functions. E6 and E7 bind directly with certain components of the Ubiquitin Proteasome System (UPS), enabling them to manipulate a number of important cellular pathways. These activities are the means by which HPV establishes an environment supporting the normal viral life cycle, however in some instances they can also lead to the development of malignancy. In this review, we have discussed how E6 and E7 oncoproteins from alpha and beta HPV types interact with the components of the UPS, and how this interplay contributes to the development of cancer.

18.
Sci Rep ; 10(1): 17339, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060693

RESUMEN

Mucosal and skin cancers are associated with infections by human papillomaviruses (HPV). The manner how viral oncoproteins hijack the host cell metabolism to meet their own energy demands and how this may contribute to tumorigenesis is poorly understood. We now show that the HPV oncoprotein E7 of HPV8, HPV11 and HPV16 directly interact with the beta subunit of the mitochondrial ATP-synthase (ATP5B), which may therefore represent a conserved feature across different HPV genera. By measuring both glycolytic and mitochondrial activity we observed that the association of E7 with ATP5B was accompanied by reduction of glycolytic activity. Interestingly, there was a drastic increase in spare mitochondrial respiratory capacity in HPV8-E7 and an even more profound increase in HPV16-E7 expressing cells. In addition, we could show that ATP5B levels were unchanged in betaHPV positive skin cancers. However, comparing HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas (OPSCC) we noticed that, while ATP5B expression levels did not correlate with patient overall survival in HPV-negative OPSCC, there was a strong correlation within the HPV16-positive OPSCC patient group. These novel findings provide evidence that HPV targets the host cell energy metabolism important for viral life cycle and HPV-mediated tumorigenesis.


Asunto(s)
Alphapapillomavirus/aislamiento & purificación , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Neoplasias Orofaríngeas/virología , Infecciones por Papillomavirus/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Infecciones Tumorales por Virus/metabolismo , Femenino , Humanos , Proteínas Oncogénicas Virales/metabolismo , Fosforilación Oxidativa , Unión Proteica , Análisis de Supervivencia
19.
Virology ; 500: 218-225, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27829177

RESUMEN

Human Papillomavirus E6 and E7 play critical roles in cancer development, although not all isolates of the viral oncoproteins are identical. A common E7 variant encodes an amino acid change at N29S. We show that this change increases the levels of phosphorylation by CKII by creating an additional phospho-acceptor site at S29. This confers increased phospho-dependent interaction with a number of cellular targets, including TATA Box Binding Protein (TBP) and pRb. A further consequence is an increased ability to target pRb and p130 for degradation. Biologically, these biochemical differences are reflected in an increased ability of the N29S variant to transform primary rodent cells. This is the first study to demonstrate an important biochemical change in E7 function caused by a naturally occurring variation, and we suggest that the N29S variant merits further assessment to determine whether it has an increased association with the development of HPV-associated malignancies.


Asunto(s)
Transformación Celular Viral , Papillomavirus Humano 16/fisiología , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/virología , Secuencias de Aminoácidos , Sitios de Unión , Papillomavirus Humano 16/química , Papillomavirus Humano 16/genética , Humanos , Proteínas E7 de Papillomavirus/genética , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/metabolismo , Fosforilación , Unión Proteica , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo
20.
Cancers (Basel) ; 8(10)2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27775564

RESUMEN

Approximately 200 human papillomaviruses (HPVs) infect human epithelial cells, of which the alpha and beta types have been the most extensively studied. Alpha HPV types mainly infect mucosal epithelia and a small group of these causes over 600,000 cancers per year worldwide at various anatomical sites, especially anogenital and head-and-neck cancers. Of these the most important is cervical cancer, which is the leading cause of cancer-related death in women in many parts of the world. Beta HPV types infect cutaneous epithelia and may contribute towards the initiation of non-melanoma skin cancers. HPVs encode two oncoproteins, E6 and E7, which are directly responsible for the development of HPV-induced carcinogenesis. They do this cooperatively by targeting diverse cellular pathways involved in the regulation of cell cycle control, of apoptosis and of cell polarity control networks. In this review, the biological consequences of papillomavirus targeting of various cellular substrates at diverse anatomical sites in the development of HPV-induced malignancies are highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA