Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cell ; 164(5): 962-73, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919431

RESUMEN

PIWI-interacting RNAs (piRNAs) play a crucial role in transposon silencing in animal germ cells. In piRNA biogenesis, single-stranded piRNA intermediates are loaded into PIWI-clade proteins and cleaved by Zucchini/MitoPLD, yielding precursor piRNAs (pre-piRNAs). Pre-piRNAs that are longer than the mature piRNA length are then trimmed at their 3' ends. Although recent studies implicated the Tudor domain protein Papi/Tdrkh in pre-piRNA trimming, the identity of Trimmer and its relationship with Papi/Tdrkh remain unknown. Here, we identified PNLDC1, an uncharacterized 3'-5' exonuclease, as Trimmer in silkworms. Trimmer is enriched in the mitochondrial fraction and binds to Papi/Tdrkh. Depletion of Trimmer and Papi/Tdrkh additively inhibits trimming, causing accumulation of ∼35-40-nt pre-piRNAs that are impaired for target cleavage and prone to degradation. Our results highlight the cooperative action of Trimmer and Papi/Tdrkh in piRNA maturation.


Asunto(s)
Bombyx/enzimología , Bombyx/genética , Proteínas de Insectos/metabolismo , Procesamiento Postranscripcional del ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Bombyx/metabolismo , Mitocondrias/metabolismo
2.
Mol Cell ; 82(1): 30-43, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34942118

RESUMEN

Small RNAs regulate a wide variety of biological processes by repressing the expression of target genes at the transcriptional and post-transcriptional levels. To achieve these functions, small RNAs form RNA-induced silencing complex (RISC) together with a member of the Argonaute (AGO) protein family. RISC is directed by its bound small RNA to target complementary RNAs and represses their expression through mRNA cleavage, degradation, and/or translational repression. Many different factors fine-tune RISC activity and stability-from guide-target RNA complementarity to the recruitment of other protein partners to post-translational modifications of RISC itself. Here, we review recent progress in understanding RISC formation, action, and degradation, and discuss new, intriguing questions in the field.


Asunto(s)
Estabilidad del ARN , Complejo Silenciador Inducido por ARN/metabolismo , ARN/metabolismo , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Unión Proteica , Estabilidad Proteica , Proteolisis , ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/genética
3.
Nature ; 607(7918): 393-398, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768503

RESUMEN

In flies, Argonaute2 (Ago2) and small interfering RNA (siRNA) form an RNA-induced silencing complex to repress viral transcripts1. The RNase III enzyme Dicer-2 associates with its partner protein R2D2 and cleaves long double-stranded RNAs to produce 21-nucleotide siRNA duplexes, which are then loaded into Ago2 in a defined orientation2-5. Here we report cryo-electron microscopy structures of the Dicer-2-R2D2 and Dicer-2-R2D2-siRNA complexes. R2D2 interacts with the helicase domain and the central linker of Dicer-2 to inhibit the promiscuous processing of microRNA precursors by Dicer-2. Notably, our structure represents the strand-selection state in the siRNA-loading process, and reveals that R2D2 asymmetrically recognizes the end of the siRNA duplex with the higher base-pairing stability, and the other end is exposed to the solvent and is accessible by Ago2. Our findings explain how R2D2 senses the thermodynamic asymmetry of the siRNA and facilitates the siRNA loading into Ago2 in a defined orientation, thereby determining which strand of the siRNA duplex is used by Ago2 as the guide strand for target silencing.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Drosophila , ARN Helicasas , ARN Bicatenario , ARN Interferente Pequeño , Proteínas de Unión al ARN , Ribonucleasa III , Animales , Proteínas Argonautas/metabolismo , Emparejamiento Base , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestructura , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , MicroARNs/metabolismo , Multimerización de Proteína , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , Interferencia de ARN , ARN Bicatenario/química , ARN Bicatenario/metabolismo , ARN Bicatenario/ultraestructura , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Complejo Silenciador Inducido por ARN/metabolismo , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Ribonucleasa III/ultraestructura
4.
Nature ; 608(7923): 618-625, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35772669

RESUMEN

Argonaute proteins use nucleic acid guides to find and bind specific DNA or RNA target sequences. Argonaute proteins have diverse biological functions and many retain their ancestral endoribonuclease activity, cleaving the phosphodiester bond between target nucleotides t10 and t11. In animals, the PIWI proteins-a specialized class of Argonaute proteins-use 21-35 nucleotide PIWI-interacting RNAs (piRNAs) to direct transposon silencing, protect the germline genome, and regulate gene expression during gametogenesis1. The piRNA pathway is required for fertility in one or both sexes of nearly all animals. Both piRNA production and function require RNA cleavage catalysed by PIWI proteins. Spermatogenesis in mice and other placental mammals requires three distinct, developmentally regulated PIWI proteins: MIWI (PIWIL1), MILI (PIWIL2) and MIWI22-4 (PIWIL4). The piRNA-guided endoribonuclease activities of MIWI and MILI are essential for the production of functional sperm5,6. piRNA-directed silencing in mice and insects also requires GTSF1, a PIWI-associated protein of unknown function7-12. Here we report that GTSF1 potentiates the weak, intrinsic, piRNA-directed RNA cleavage activities of PIWI proteins, transforming them into efficient endoribonucleases. GTSF1 is thus an example of an auxiliary protein that potentiates the catalytic activity of an Argonaute protein.


Asunto(s)
Proteínas Argonautas , Péptidos y Proteínas de Señalización Intracelular , División del ARN , ARN Interferente Pequeño , Animales , Proteínas Argonautas/clasificación , Proteínas Argonautas/metabolismo , Biocatálisis , Femenino , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , ARN Interferente Pequeño/metabolismo
5.
Mol Cell ; 73(1): 119-129.e5, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30503771

RESUMEN

MicroRNAs (miRNAs) are loaded into the Argonaute subfamily of proteins (AGO) to form an effector complex that silences target genes. Empty but not miRNA-loaded AGO is selectively degraded across species. However, the mechanism and biological significance of selective AGO degradation remain unclear. We discovered a RING-type E3 ubiquitin ligase we named Iruka (Iru), which selectively ubiquitinates the empty form of Drosophila Ago1 to trigger its degradation. Iru preferentially binds empty Ago1 and ubiquitinates Lys514 in the L2 linker, which is predicted to be inaccessible in the miRNA-loaded state. Depletion of Iru results in global impairment of miRNA-mediated silencing of target genes and in the accumulation of aberrant Ago1 that is dysfunctional for canonical protein-protein interactions and miRNA loading. Our findings reveal a sophisticated mechanism for the selective degradation of empty AGO that underlies a quality control process to ensure AGO function.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas Argonautas/química , Proteínas Argonautas/genética , Línea Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Silenciador del Gen , Lisina , MicroARNs/genética , MicroARNs/metabolismo , Unión Proteica , Conformación Proteica , Proteolisis , Relación Estructura-Actividad , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
6.
EMBO Rep ; 25(5): 2239-2257, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632376

RESUMEN

The PIWI-interacting RNA (piRNA) pathway plays a crucial role in silencing transposons in the germline. piRNA-guided target cleavage by PIWI proteins triggers the biogenesis of new piRNAs from the cleaved RNA fragments. This process, known as the ping-pong cycle, is mediated by the two PIWI proteins, Siwi and BmAgo3, in silkworms. However, the detailed molecular mechanism of the ping-pong cycle remains largely unclear. Here, we show that Spindle-E (Spn-E), a putative ATP-dependent RNA helicase, is essential for BmAgo3-dependent production of Siwi-bound piRNAs in the ping-pong cycle and that this function of Spn-E requires its ATPase activity. Moreover, Spn-E acts to suppress homotypic Siwi-Siwi ping-pong, but this function of Spn-E is independent of its ATPase activity. These results highlight the dual role of Spn-E in facilitating proper heterotypic ping-pong in silkworms.


Asunto(s)
Bombyx , ARN Interferente Pequeño , Bombyx/genética , Bombyx/metabolismo , Animales , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , ARN de Interacción con Piwi
7.
Nature ; 578(7794): 311-316, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31996847

RESUMEN

PIWI-interacting RNAs (piRNAs) of between approximately 24 and 31 nucleotides in length guide PIWI proteins to silence transposons in animal gonads, thereby ensuring fertility1. In the biogenesis of piRNAs, PIWI proteins are first loaded with 5'-monophosphorylated RNA fragments called pre-pre-piRNAs, which then undergo endonucleolytic cleavage to produce pre-piRNAs1,2. Subsequently, the 3'-ends of pre-piRNAs are trimmed by the exonuclease Trimmer (PNLDC1 in mouse)3-6 and 2'-O-methylated by the methyltransferase Hen1 (HENMT1 in mouse)7-9, generating mature piRNAs. It is assumed that the endonuclease Zucchini (MitoPLD in mouse) is a major enzyme catalysing the cleavage of pre-pre-piRNAs into pre-piRNAs10-13. However, direct evidence for this model is lacking, and how pre-piRNAs are generated remains unclear. Here, to analyse pre-piRNA production, we established a Trimmer-knockout silkworm cell line and derived a cell-free system that faithfully recapitulates Zucchini-mediated cleavage of PIWI-loaded pre-pre-piRNAs. We found that pre-piRNAs are generated by parallel Zucchini-dependent and -independent mechanisms. Cleavage by Zucchini occurs at previously unrecognized consensus motifs on pre-pre-piRNAs, requires the RNA helicase Armitage, and is accompanied by 2'-O-methylation of pre-piRNAs. By contrast, slicing of pre-pre-piRNAs with weak Zucchini motifs is achieved by downstream complementary piRNAs, producing pre-piRNAs without 2'-O-methylation. Regardless of the endonucleolytic mechanism, pre-piRNAs are matured by Trimmer and Hen1. Our findings highlight multiplexed processing of piRNA precursors that supports robust and flexible piRNA biogenesis.


Asunto(s)
Secuencias de Aminoácidos , Secuencia de Consenso , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Fosfolipasa D/química , Fosfolipasa D/metabolismo , ARN Interferente Pequeño/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Secuencia de Bases , Bombyx , Línea Celular , Sistema Libre de Células , Técnicas de Inactivación de Genes , Proteínas de Insectos/genética , Metilación , Ratones , ARN Helicasas/metabolismo
8.
Mol Cell ; 70(4): 722-729.e4, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29775584

RESUMEN

Loading of small RNAs into Argonaute, the core protein in RNA silencing, requires the Hsp70/Hsp90 chaperone machinery. This machinery also activates many other clients, including steroid hormone receptors and kinases, but how their structures change during chaperone-dependent activation remains unclear. Here, we utilized single-molecule Förster resonance energy transfer (smFRET) to probe the conformational changes of Drosophila Ago2 mediated by the chaperone machinery. We found that empty Ago2 exists in various closed conformations. The Hsp70 system (Hsp40 and Hsp70) and the Hsp90 system (Hop, Hsp90, and p23) together render Ago2 into an open, active form. The Hsp70 system, but not the Hsp90 system alone, is sufficient for Ago2 to partially populate the open form. Instead, the Hsp90 system is required to extend the dwell time of Ago2 in the open state, which must be transiently primed by the Hsp70 system. Our data uncover distinct and coordinated actions of the chaperone machinery, where the Hsp70 system expands the structural ensembles of Ago2 and the Hsp90 system captures and stabilizes the active form.


Asunto(s)
Proteínas Argonautas/química , Drosophila melanogaster/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Conformación Proteica , ARN Pequeño no Traducido/genética , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos , Unión Proteica , Pliegue de Proteína , Interferencia de ARN
9.
PLoS Genet ; 19(2): e1010632, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36758066

RESUMEN

PIWI proteins and PIWI-interacting RNAs (piRNAs) play a central role in repressing transposable elements in animal germ cells. It is thought that piRNAs are mainly produced from discrete genomic loci named piRNA clusters, which often contain many "dead" transposon remnants from past invasions and have heterochromatic features. In the genome of silkworm ovary-derived cultured cells called BmN4, a well-established model for piRNA research, torimochi was previously annotated as a unique and specialized genomic region that can capture transgenes and produce new piRNAs bearing a trans-silencing activity. However, the sequence identity of torimochi has remained elusive. Here, we carefully characterized torimochi by utilizing the updated silkworm genome sequence and the long-read sequencer MinION. We found that torimochi is in fact a full-length gypsy-like LTR retrotransposon, which is exceptionally active and has massively expanded its copy number in BmN4 cells. Many copies of torimochi in BmN4 cells have features of open chromatin and the ability to produce piRNAs. Therefore, torimochi may represent a young, growing piRNA cluster, which is still "alive" and active in transposition yet capable of trapping other transposable elements to produce de novo piRNAs.


Asunto(s)
Bombyx , ARN de Interacción con Piwi , Animales , Femenino , ARN Interferente Pequeño/genética , Bombyx/genética , Elementos Transponibles de ADN , Células Cultivadas , Proteínas Argonautas/genética , Células Germinativas/metabolismo
10.
PLoS Genet ; 19(9): e1010912, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37733654

RESUMEN

PIWI-interacting RNAs (piRNAs) guide PIWI proteins to target transposons in germline cells, thereby suppressing transposon activity to preserve genome integrity in metazoans' gonadal tissues. Piwi, one of three Drosophila PIWI proteins, is expressed in the nucleus and suppresses transposon activity by forming heterochromatin in an RNA cleavage-independent manner. Recently, Piwi was reported to control cell metabolism in Drosophila fat body, providing an example of piRNAs acting in non-gonadal somatic tissues. However, mutant flies of the other two PIWI proteins, Aubergine (Aub) and Argonaute3 (Ago3), show no apparent phenotype except for infertility, blurring the importance of the piRNA pathway in non-gonadal somatic tissues. The silkworm, Bombyx mori, possesses two PIWI proteins, Siwi (Aub homolog) and BmAgo3 (Ago3 homolog), whereas B. mori does not have a Piwi homolog. Siwi and BmAgo3 are mainly expressed in gonadal tissues and play a role in repressing transposon activity by cleaving transposon RNA in the cytoplasm. Here, we generated Siwi and BmAgo3 loss-of-function mutants of B. mori and found that they both showed delayed larval growth and failed to become adult moths. They also exhibited defects in wing development and sexual differentiation. Transcriptome analysis revealed that loss of somatic piRNA biogenesis pathways results in abnormal expression of not only transposons but also host genes, presumably causing severe growth defects. Our results highlight the roles of non-gonadal somatic piRNAs in B. mori development.


Asunto(s)
Bombyx , Animales , Bombyx/genética , Larva/genética , Diferenciación Sexual , ARN de Interacción con Piwi , Drosophila
11.
Genes Cells ; 28(8): 539-552, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37249032

RESUMEN

A long-standing assumption in molecular biology posits that the conservation of protein and nucleic acid sequences emphasizes the functional significance of biomolecules. These conserved sequences fold into distinct secondary and tertiary structures, enable highly specific molecular interactions, and regulate complex yet organized molecular processes within living cells. However, recent evidence suggests that biomolecules can also function through primary sequence regions that lack conservation across species or gene families. These regions typically do not form rigid structures, and their inherent flexibility is critical for their functional roles. This review examines the emerging roles and molecular mechanisms of "nondomain biomolecules," whose functions are not easily predicted due to the absence of conserved functional domains. We propose the hypothesis that both domain- and nondomain-type molecules work together to enable flexible and efficient molecular processes within the highly crowded intracellular environment.


Asunto(s)
Proteínas , Proteínas/genética , Secuencia Conservada , Biopolímeros
12.
RNA ; 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319089

RESUMEN

The PIWI-interacting RNA (piRNA) pathway is a protection mechanism against transposons in animal germ cells. Most PIWI proteins possess piRNA-guided endonuclease activity, which is critical for silencing transposons and producing new piRNAs. Gametocyte-specific factor 1 (Gtsf1), an evolutionarily conserved zinc finger protein, promotes catalysis by PIWI proteins. Many animals have multiple Gtsf1 paralogs; however, their respective roles in the piRNA pathway are not fully understood. Here, we dissected the roles of Gtsf1 and its paralog Gtsf1-like (Gtsf1L) in the silkworm piRNA pathway. We found that Gtsf1 and Gtsf1L preferentially bind the two silkworm PIWI paralogs, Siwi and BmAgo3, respectively, and facilitate the endonuclease activity of each PIWI protein. This orthogonal activation effect was further supported by specific reduction of BmAgo3-bound Masculinizer piRNA and Siwi-bound Feminizer piRNA, the unique piRNA pair required for silkworm feminization, upon depletion of Gtsf1 and Gtsf1L, respectively. Our results indicate that the two Gtsf paralogs in silkworms activate their respective PIWI partners, thereby facilitating the amplification of piRNAs.

13.
Mol Cell ; 61(6): 874-85, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26990990

RESUMEN

The control of mRNA stability plays a central role in regulating gene expression. In metazoans, the earliest stages of development are driven by maternally supplied mRNAs. The degradation of these maternal mRNAs is critical for promoting the maternal-to-zygotic transition of developmental programs, although the underlying mechanisms are poorly understood in vertebrates. Here, we characterized maternal mRNA degradation pathways in zebrafish using a transcriptome analysis and systematic reporter assays. Our data demonstrate that ORFs enriched with uncommon codons promote deadenylation by the CCR4-NOT complex in a translation-dependent manner. This codon-mediated mRNA decay is conditional on the context of the 3' UTR, with long 3' UTRs conferring resistance to deadenylation. These results indicate that the combined effect of codon usage and 3' UTR length determines the stability of maternal mRNAs in zebrafish embryos. Our study thus highlights the codon-mediated mRNA decay as a conserved regulatory mechanism in eukaryotes.


Asunto(s)
Regulación de la Expresión Génica/genética , Estabilidad del ARN/genética , ARN Mensajero/biosíntesis , Transcriptoma/genética , Regiones no Traducidas 3'/genética , Animales , Codón/genética , Relaciones Materno-Fetales , Complejos Multiproteicos/genética , ARN Mensajero/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
14.
Nucleic Acids Res ; 50(8): 4669-4684, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35380679

RESUMEN

Monocot DICER-LIKE3 (DCL3) and DCL5 produce distinct 24-nt small interfering RNAs (siRNAs), heterochromatic siRNAs (hc-siRNAs) and phased secondary siRNAs (phasiRNAs), respectively. The former small RNAs are linked to silencing of transposable elements and heterochromatic repeats, and the latter to reproductive processes. It is assumed that these DCLs evolved from an ancient 'eudicot-type' DCL3 ancestor, which may have produced both types of siRNAs. However, how functional differentiation was achieved after gene duplication remains elusive. Here, we find that monocot DCL3 and DCL5 exhibit biochemically distinct preferences for 5' phosphates and 3' overhangs, consistent with the structural properties of their in vivo double-stranded RNA substrates. Importantly, these distinct substrate specificities are determined by the PAZ domains of DCL3 and DCL5, which have accumulated mutations during the course of evolution. These data explain the mechanism by which these DCLs cleave their cognate substrates from a fixed end, ensuring the production of functional siRNAs. Our study also indicates how plants have diversified and optimized RNA silencing mechanisms during evolution.


Asunto(s)
Proteínas de Arabidopsis , Ribonucleasa III , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Duplicación de Gen , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , ARN Bicatenario , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
15.
Nucleic Acids Res ; 50(22): 12997-13010, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36477368

RESUMEN

The model plant Arabidopsis thaliana encodes as many as ten Argonaute proteins (AGO1-10) with different functions. Each AGO selectively loads a set of small RNAs by recognizing their length and 5' nucleotide identity to properly regulate target genes. Previous studies showed that AGO4 and AGO6, key factors in DNA methylation, incorporate 24-nt small-interfering RNAs with 5' adenine (24A siRNAs). However, it has been unclear how these AGOs specifically load 24A siRNAs. Here, we biochemically investigated the siRNA preference of AGO4, AGO6 and their chimeric mutants. We found that AGO4 and AGO6 use distinct mechanisms to preferentially load 24A siRNAs. Moreover, we showed that the 5' A specificity of AGO4 and AGO6 is not determined by the previously known nucleotide specificity loop in the MID domain but rather by the coordination of the MID and PIWI domains. These findings advance our mechanistic understanding of how small RNAs are accurately sorted into different AGO proteins in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Nucleótidos/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
16.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34330830

RESUMEN

Secondary small interfering RNA (siRNA) production, triggered by primary small RNA targeting, is critical for proper development and antiviral defense in many organisms. RNA-dependent RNA polymerase (RDR) is a key factor in this pathway. However, how RDR specifically converts the targets of primary small RNAs into double-stranded RNA (dsRNA) intermediates remains unclear. Here, we develop an in vitro system that allows for dissection of the molecular mechanisms underlying the production of trans-acting siRNAs, a class of plant secondary siRNAs that play roles in organ development and stress responses. We find that a combination of the dsRNA-binding protein, SUPPRESSOR OF GENE SILENCING3; the putative nuclear RNA export factor, SILENCING DEFECTIVE5, primary small RNA, and Argonaute is required for physical recruitment of RDR6 to target RNAs. dsRNA synthesis by RDR6 is greatly enhanced by the removal of the poly(A) tail, which can be achieved by the cleavage at a second small RNA-binding site bearing appropriate mismatches. Importantly, when the complementarity of the base pairing at the second target site is too strong, the small RNA-Argonaute complex remains at the cleavage site, thereby blocking the initiation of dsRNA synthesis by RDR6. Our data highlight the light and dark sides of double small RNA targeting in the secondary siRNA biogenesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Nicotiana/citología , Proteínas de Plantas/metabolismo , ARN Interferente Pequeño , Línea Celular , Sistema Libre de Células , Proteínas de Plantas/genética , Interferencia de ARN
17.
RNA ; 27(2): 151-162, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33177187

RESUMEN

A key approach for improving siRNA efficacy is chemical modifications. Through an in silico screening of modifications at the 5'-end nucleobase of the guide strand, an adenine-derived compound called 6-(3-(2-carboxyethyl)phenyl)-purine (6-mCEPh-purine) was identified to improve the RNAi activity in cultured human cells and in vivo mouse models. Nevertheless, it remains unclear how this chemical modification enhances the siRNA potency. Here, we used a series of biochemical approaches to quantitatively evaluate the effect of the 6-mCEPh-purine modification at each step in the assembly of the RNAi effector complex called RISC. We found that the modification improves the formation of mature RISC at least in two different ways, by fixing the loading orientation of siRNA duplexes and increasing the stability of mature RISC after passenger strand ejection. Our data will provide a molecular platform for further development of chemically modified siRNA drugs.


Asunto(s)
Adenina/farmacología , Proteínas Argonautas/genética , Interferencia de ARN/efectos de los fármacos , ARN Bicatenario/genética , ARN Interferente Pequeño/agonistas , Complejo Silenciador Inducido por ARN/agonistas , Adenina/análogos & derivados , Adenina/síntesis química , Proteínas Argonautas/metabolismo , Emparejamiento Base , Secuencia de Bases , Células HEK293 , Humanos , Metilación , Unión Proteica , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo
18.
RNA ; 27(2): 163-173, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33177188

RESUMEN

Small interfering RNAs (siRNAs) can be utilized not only as functional biological research tools but also as therapeutic agents. For the clinical use of siRNA as drugs, various chemical modifications have been used to improve the activity of siRNA drugs, and further chemical modifications are expected to improve the utility of siRNA therapeutics. As the 5' nucleobase of the guide strand affects the interaction between an siRNA and AGO2 and target cleavage activity, structural optimization of this specific position may be a useful strategy for improving siRNA activity. Here, using the in silico model of the complex between human AGO2 MID domain and nucleoside monophosphates, we screened and synthesized an original adenine-derived analog, 6-(3-(2-carboxyethyl)phenyl)purine (6-mCEPh-purine), that fits better than the natural nucleotide bases into the MID domain of AGO2. Introduction of the 6-mCEPh-purine analog at the 5'-end of the siRNA guide strand significantly enhanced target knockdown activity in both cultured cell lines and in vivo animal models. Our findings can help expand strategies for rationally optimizing siRNA activity via chemical modifications of nucleotide bases.


Asunto(s)
Adenina/farmacología , Proteínas Argonautas/genética , Interferencia de ARN/efectos de los fármacos , ARN Bicatenario/genética , ARN Interferente Pequeño/agonistas , Complejo Silenciador Inducido por ARN/agonistas , Adenina/análogos & derivados , Adenina/síntesis química , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Animales , Apolipoproteína B-100/antagonistas & inhibidores , Apolipoproteína B-100/sangre , Apolipoproteína B-100/química , Apolipoproteína B-100/genética , Proteínas Argonautas/metabolismo , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Colesterol/sangre , Células HeLa , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Metilación , Ratones , Ratones Noqueados , Modelos Moleculares , Unión Proteica , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo
19.
PLoS Biol ; 18(3): e3000632, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32163402

RESUMEN

Proteins are typically denatured and aggregated by heating at near-boiling temperature. Exceptions to this principle include highly disordered and heat-resistant proteins found in extremophiles, which help these organisms tolerate extreme conditions such as drying, freezing, and high salinity. In contrast, the functions of heat-soluble proteins in non-extremophilic organisms including humans remain largely unexplored. Here, we report that heat-resistant obscure (Hero) proteins, which remain soluble after boiling at 95°C, are widespread in Drosophila and humans. Hero proteins are hydrophilic and highly charged, and function to stabilize various "client" proteins, protecting them from denaturation even under stress conditions such as heat shock, desiccation, and exposure to organic solvents. Hero proteins can also block several different types of pathological protein aggregations in cells and in Drosophila strains that model neurodegenerative diseases. Moreover, Hero proteins can extend life span of Drosophila. Our study reveals that organisms naturally use Hero proteins as molecular shields to stabilize protein functions, highlighting their biotechnological and therapeutic potential.


Asunto(s)
Proteínas de Drosophila/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Argonautas/química , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Unión al ADN/metabolismo , Desecación , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Ojo/patología , Células HEK293 , Calor , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/metabolismo , Longevidad , Masculino , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Estabilidad Proteica , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Solubilidad
20.
EMBO Rep ; 22(7): e51342, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33973704

RESUMEN

PIWI-interacting RNAs (piRNAs) guide PIWI proteins to silence transposable elements and safeguard fertility in germ cells. Many protein factors required for piRNA biogenesis localize to perinuclear ribonucleoprotein (RNP) condensates named nuage, where target silencing and piRNA amplification are thought to occur. In mice, some of the piRNA factors are found in discrete cytoplasmic foci called processing bodies (P-bodies). However, the dynamics and biological significance of such compartmentalization of the piRNA pathway remain unclear. Here, by analyzing the subcellular localization of functional mutants of piRNA factors, we show that piRNA factors are actively compartmentalized into nuage and P-bodies in silkworm cells. Proper demixing of nuage and P-bodies requires target cleavage by the PIWI protein Siwi and ATP hydrolysis by the DEAD-box helicase BmVasa, disruption of which leads to promiscuous overproduction of piRNAs deriving from non-transposable elements. Our study highlights a role of dynamic subcellular compartmentalization in ensuring the fidelity of piRNA biogenesis.


Asunto(s)
Bombyx , Proteínas de Drosophila , Animales , Proteínas Argonautas/genética , Bombyx/genética , Bombyx/metabolismo , Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Ratones , ARN Interferente Pequeño/genética , Ribonucleoproteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA