Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant J ; 117(5): 1413-1431, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38038980

RESUMEN

During fruit ripening, polygalacturonases (PGs) are key contributors to the softening process in many species. Apple is a crisp fruit that normally exhibits only minor changes to cell walls and limited fruit softening. Here, we explore the effects of PG overexpression during fruit development using transgenic apple lines overexpressing the ripening-related endo-POLYGALACTURONASE1 gene. MdPG1-overexpressing (PGox) fruit displayed early maturation/ripening with black seeds, conversion of starch to sugars and ethylene production occurring by 80 days after pollination (DAP). PGox fruit exhibited a striking, white-skinned phenotype that was evident from 60 DAP and most likely resulted from increased air spaces and separation of cells in the hypodermis due to degradation of the middle lamellae. Irregularities in the integrity of the epidermis and cuticle were also observed. By 120 DAP, PGox fruit cracked and showed lenticel-associated russeting. Increased cuticular permeability was associated with microcracks in the cuticle around lenticels and was correlated with reduced cortical firmness at all time points and extensive post-harvest water loss from the fruit, resulting in premature shrivelling. Transcriptomic analysis suggested that early maturation was associated with upregulation of genes involved in stress responses, and overexpression of MdPG1 also altered the expression of genes involved in cell wall metabolism (e.g. ß-galactosidase, MD15G1221000) and ethylene biosynthesis (e.g. ACC synthase, MD14G1111500). The results show that upregulation of PG not only has dramatic effects on the structure of the fruit outer cell layers, indirectly affecting water status and turgor, but also has unexpected consequences for fruit development.


Asunto(s)
Malus , Malus/metabolismo , Frutas/metabolismo , Etilenos/metabolismo , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas , Pared Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant J ; 103(1): 293-307, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32096261

RESUMEN

Apples (Malus spp.) accumulate significant quantities of the dihydrochalcone glycoside, phloridzin, whilst pears (Pyrus spp.) do not. To explain this difference, we hypothesized that a metabolic bottleneck in the phenylpropanoid pathway might exist in apple. Expression analysis indicated that transcript levels of early phenylpropanoid pathway genes in apple and pear leaves were similar, except for chalcone isomerase (CHI), which was much lower in apple. Apples also showed very low CHI activity compared with pear. To relieve the bottleneck at CHI, transgenic apple plants overexpressing the Arabidopsis AtCHI gene were produced. Unlike other transgenic apples where phenylpropanoid flux was manipulated, AtCHI overexpression (CHIox) plants were phenotypically indistinguishable from wild-type, except for an increase in red pigmentation in expanding leaves. CHIox plants accumulated slightly increased levels of flavanols and flavan-3-ols in the leaves, but the major change was a 2.8- to 19-fold drop in phloridzin concentrations compared with wild-type. The impact of these phytochemical changes on insect preference was studied using a two-choice leaf assay with the polyphagous apple pest, the two-spotted spider mite (Tetranychus urticae Koch). Transgenic CHIox leaves were more susceptible to herbivory, an effect that could be reversed (complemented) by application of phloridzin to transgenic leaves. Taken together, these findings shed new light on phenylpropanoid biosynthesis in apple and suggest a new physiological role for phloridzin as an antifeedant in leaves.


Asunto(s)
Liasas Intramoleculares/metabolismo , Malus/metabolismo , Florizina/metabolismo , Defensa de la Planta contra la Herbivoria , Tetranychidae , Animales , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Flavonoles/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas Intramoleculares/fisiología , Malus/fisiología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Pyrus/metabolismo , Pyrus/fisiología , Tetranychidae/fisiología
3.
Plant Physiol ; 184(2): 738-752, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32732350

RESUMEN

Epidemics of obesity and type 2 diabetes drive strong consumer interest in plant-based low-calorie sweeteners. Trilobatin is a sweetener found at high concentrations in the leaves of a range of crabapple (Malus) species, but not in domesticated apple (Malus × domestica) leaves, which contain trilobatin's bitter positional isomer phloridzin. Variation in trilobatin content was mapped to the Trilobatin locus on LG 7 in a segregating population developed from a cross between domesticated apples and crabapples. Phloretin glycosyltransferase2 (PGT2) was identified by activity-directed protein purification and differential gene expression analysis in samples high in trilobatin but low in phloridzin. Markers developed for PGT2 cosegregated strictly with the Trilobatin locus. Biochemical analysis showed PGT2 efficiently catalyzed 4'-o-glycosylation of phloretin to trilobatin as well as 3-hydroxyphloretin to sieboldin. Transient expression of double bond reductase, chalcone synthase, and PGT2 genes reconstituted the apple pathway for trilobatin production in Nicotiana benthamiana Transgenic M. × domestica plants overexpressing PGT2 produced high concentrations of trilobatin in young leaves. Transgenic plants were phenotypically normal, and no differences in disease susceptibility were observed compared to wild-type plants grown under simulated field conditions. Sensory analysis indicated that apple leaf teas from PGT2 transgenics were readily discriminated from control leaf teas and were perceived as significantly sweeter. Identification of PGT2 allows marker-aided selection to be developed to breed apples containing trilobatin, and for high amounts of this natural low-calorie sweetener to be produced via biopharming and metabolic engineering in yeast.


Asunto(s)
Chalconas/metabolismo , Flavonoides/biosíntesis , Malus/metabolismo , Floretina/metabolismo , Polifenoles/biosíntesis , Edulcorantes/metabolismo , Glicosiltransferasas/metabolismo , Plantas Modificadas Genéticamente
4.
Plant J ; 100(6): 1148-1162, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31436867

RESUMEN

Terpenes are important compounds in plant trophic interactions. A meta-analysis of GC-MS data from a diverse range of apple (Malus × domestica) genotypes revealed that apple fruit produces a range of terpene volatiles, with the predominant terpene being the acyclic branched sesquiterpene (E,E)-α-farnesene. Four quantitative trait loci (QTLs) for α-farnesene production in ripe fruit were identified in a segregating 'Royal Gala' (RG) × 'Granny Smith' (GS) population with one major QTL on linkage group 10 co-locating with the MdAFS1 (α-farnesene synthase-1) gene. Three of the four QTLs were derived from the GS parent, which was consistent with GC-MS analysis of headspace and solvent-extracted terpenes showing that cold-treated GS apples produced higher levels of (E,E)-α-farnesene than RG. Transgenic RG fruit downregulated for MdAFS1 expression produced significantly lower levels of (E,E)-α-farnesene. To evaluate the role of (E,E)-α-farnesene in fungal pathogenesis, MdAFS1 RNA interference transgenic fruit and RG controls were inoculated with three important apple post-harvest pathogens [Colletotrichum acutatum, Penicillium expansum and Neofabraea alba (synonym Phlyctema vagabunda)]. From results obtained over four seasons, we demonstrate that reduced (E,E)-α-farnesene is associated with decreased disease initiation rates of all three pathogens. In each case, the infection rate was significantly reduced 7 days post-inoculation, although the size of successful lesions was comparable with infections on control fruit. These results indicate that (E,E)-α-farnesene production is likely to be an important factor involved in fungal pathogenesis in apple fruit.


Asunto(s)
Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Enfermedades de las Plantas/inmunología , Sesquiterpenos/metabolismo , Colletotrichum/patogenicidad , Resistencia a la Enfermedad , Regulación hacia Abajo , Hongos/patogenicidad , Cromatografía de Gases y Espectrometría de Masas , Ligamiento Genético , Genotipo , Penicillium/patogenicidad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Sitios de Carácter Cuantitativo , Interferencia de ARN/inmunología , Terpenos/metabolismo
5.
Plant J ; 91(2): 237-250, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28370633

RESUMEN

The polyphenol profile of apple (Malus × domestica) is dominated by the dihydrochalcone glycoside phloridzin, but its physiological role is yet to be elucidated. Biosynthesis of phloridzin occurs as a side branch of the main phenylpropanoid pathway, with the final step mediated by the phloretin-specific glycosyltransferase UGT88F1. Unexpectedly, given that UGTs are sometimes viewed as 'decorating enzymes', UGT88F1 knockdown lines were severely dwarfed, with greatly reduced internode lengths, narrow lanceolate leaves, and changes in leaf and fruit cellular morphology. These changes suggested that auxin transport had been altered in the knockdown lines, which was confirmed in assays showing that auxin flux from the shoot apex was increased in the transgenic lines. Metabolite analysis revealed no accumulation of the phloretin aglycone, as well as decreases in many non-target phenylpropanoid compounds. This decreased accumulation of metabolites appeared to be mediated by the repression of the phenylpropanoid pathway via a reduction in key transcript levels (e.g. phenylalanine ammonia lyase, PAL) and enzyme activities (PAL and chalcone synthase). Application of exogenous phloridzin to the UGT88F1 knockdown lines in tissue culture enhanced axial leaf growth and partially restored some aspects of 'normal' apple leaf growth. Together, our results strongly implicate dihydrochalcones as critical compounds in modulating phenylpropanoid pathway flux and establishing auxin patterning early in apple development.


Asunto(s)
Glicosiltransferasas/genética , Malus/metabolismo , Floretina/metabolismo , Proteínas de Plantas/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Chalconas/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Glicosiltransferasas/metabolismo , Ácidos Indolacéticos/metabolismo , Malus/efectos de los fármacos , Malus/genética , Fenilanina Amoníaco-Liasa/metabolismo , Florizina/farmacología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
6.
Plant J ; 91(2): 292-305, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28380280

RESUMEN

Fruit accumulate a diverse set of volatiles including esters and phenylpropenes. Volatile esters are synthesised via fatty acid degradation or from amino acid precursors, with the final step being catalysed by alcohol acyl transferases (AATs). Phenylpropenes are produced as a side branch of the general phenylpropanoid pathway. Major quantitative trait loci (QTLs) on apple (Malus × domestica) linkage group (LG)2 for production of the phenylpropene estragole and volatile esters (including 2-methylbutyl acetate and hexyl acetate) both co-located with the MdAAT1 gene. MdAAT1 has previously been shown to be required for volatile ester production in apple (Plant J., 2014, https://doi.org/10.1111/tpj.12518), and here we show it is also required to produce p-hydroxycinnamyl acetates that serve as substrates for a bifunctional chavicol/eugenol synthase (MdoPhR5) in ripe apple fruit. Fruit from transgenic 'Royal Gala' MdAAT1 knockdown lines produced significantly reduced phenylpropene levels, whilst manipulation of the phenylpropanoid pathway using MdCHS (chalcone synthase) knockout and MdMYB10 over-expression lines increased phenylpropene production. Transient expression of MdAAT1, MdoPhR5 and MdoOMT1 (O-methyltransferase) genes reconstituted the apple pathway to estragole production in tobacco. AATs from ripe strawberry (SAAT1) and tomato (SlAAT1) fruit can also utilise p-coumaryl and coniferyl alcohols, indicating that ripening-related AATs are likely to link volatile ester and phenylpropene production in many different fruit.


Asunto(s)
Anisoles/metabolismo , Malus/metabolismo , Proteínas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Derivados de Alilbenceno , Ésteres/metabolismo , Fragaria/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Solanum lycopersicum/genética , Malus/genética , Redes y Vías Metabólicas , Fenoles/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas/genética , Sitios de Carácter Cuantitativo , Nicotiana/metabolismo
7.
J Exp Bot ; 69(9): 2379-2390, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29190381

RESUMEN

Branching has a major influence on the overall shape and productivity of a plant. Strigolactones (SLs) have been identified as plant hormones that have a key role in suppressing the outgrowth of axillary meristems. CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes are integral to the biosynthesis of SLs and are well characterized in annual plants, but their role in woody perennials is relatively unknown. We identified CCD7 and CCD8 orthologues from apple and demonstrated that MdCCD7 and MdCCD8 are able to complement the Arabidopsis branching mutants max3 and max4 respectively, indicating conserved function. RNAi lines of MdCCD7 show reduced gene expression and increased branching in apple. We performed reciprocal grafting experiments with combinations of MdCCD7 RNAi and wild-type 'Royal Gala' as rootstocks and scion. Unexpectedly, wild-type roots were unable to suppress branching in MdCCD7 RNAi scions. Another key finding was that MdCCD7 RNAi scions initiated phytomers at an increased rate relative to the wild type, resulting in a greater node number and primary shoot length. We suggest that localized SL biosynthesis in the shoot, rather than roots, controls axillary bud outgrowth and shoot growth rate in apple.


Asunto(s)
Dioxigenasas/genética , Lactonas/metabolismo , Malus/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Brotes de la Planta/crecimiento & desarrollo , Dioxigenasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/crecimiento & desarrollo , Malus/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética
8.
Plant J ; 82(6): 937-950, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25904040

RESUMEN

Phenylpropenes, such as eugenol and trans-anethole, are important aromatic compounds that determine flavour and aroma in many herbs and spices. Some apple varieties produce fruit with a highly desirable spicy/aromatic flavour that has been attributed to the production of estragole, a methylated phenylpropene. To elucidate the molecular basis for estragole production and its contribution to ripe apple flavour and aroma we characterised a segregating population from a Royal Gala (RG, estragole producer) × Granny Smith (GS, non-producer) apple cross. Two quantitative trait loci (QTLs; accounting for 9.2 and 24.8% of the variation) on linkage group (LG) 1 and LG2 were identified that co-located with seven candidate genes for phenylpropene O-methyltransferases (MdoOMT1-7). Of these genes, only expression of MdoOMT1 on LG1 increased strongly with ethylene and could be correlated with increasing estragole production in ripening RG fruit. Transient over-expression in tobacco showed that MdoOMT1 utilised a range of phenylpropene substrates and catalysed the conversion of chavicol to estragole. Royal Gala carried two alleles (MdoOMT1a, MdoOMT1b) whilst GS appeared to be homozygous for MdoOMT1b. MdoOMT1a showed a higher affinity and catalytic efficiency towards chavicol than MdoOMT1b, which could account for the phenotypic variation at the LG1 QTL. Multiple transgenic RG lines with reduced MdoOMT1 expression produced lower levels of methylated phenylpropenes, including estragole and methyleugenol. Differences in fruit aroma could be perceived in these fruit, compared with controls, by sensory analysis. Together these results indicate that MdoOMT1 is required for the production of methylated phenylpropenes in apple and that phenylpropenes including estragole may contribute to ripe apple fruit aroma.


Asunto(s)
Anisoles/metabolismo , Frutas/metabolismo , Malus/metabolismo , Metiltransferasas/metabolismo , Proteínas de Plantas/genética , Derivados de Alilbenceno , Etilenos/metabolismo , Eugenol/análogos & derivados , Eugenol/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Malus/genética , Metiltransferasas/genética , Datos de Secuencia Molecular , Odorantes , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo
9.
Plant J ; 84(2): 417-27, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26358530

RESUMEN

The molecular genetic mechanisms underlying fruit size remain poorly understood in perennial crops, despite size being an important agronomic trait. Here we show that the expression level of a microRNA gene (miRNA172) influences fruit size in apple. A transposon insertional allele of miRNA172 showing reduced expression associates with large fruit in an apple breeding population, whereas over-expression of miRNA172 in transgenic apple significantly reduces fruit size. The transposon insertional allele was found to be co-located with a major fruit size quantitative trait locus, fixed in cultivated apples and their wild progenitor species with relatively large fruit. This finding supports the view that the selection for large size in apple fruit was initiated prior to apple domestication, likely by large mammals, before being subsequently strengthened by humans, and also helps to explain why signatures of genetic bottlenecks and selective sweeps are normally weaker in perennial crops than in annual crops.


Asunto(s)
Frutas/genética , Malus/genética , MicroARNs/genética , Alelos
10.
Plant J ; 78(6): 903-15, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24661745

RESUMEN

The 'fruity' attributes of ripe apples (Malus × domestica) arise from our perception of a combination of volatile ester compounds. Phenotypic variability in ester production was investigated using a segregating population from a 'Royal Gala' (RG; high ester production) × 'Granny Smith' (GS; low ester production) cross, as well as in transgenic RG plants in which expression of the alcohol acyl transferase 1 (AAT1) gene was reduced. In the RG × GS population, 46 quantitative trait loci (QTLs) for the production of esters and alcohols were identified on 15 linkage groups (LGs). The major QTL for 35 individual compounds was positioned on LG2 and co-located with AAT1. Multiple AAT1 gene variants were identified in RG and GS, but only two (AAT1-RGa and AAT1-GSa) were functional. AAT1-RGa and AAT1-GSa were both highly expressed in the cortex and skin of ripe fruit, but AAT1 protein was observed mainly in the skin. Transgenic RG specifically reduced in AAT1 expression showed reduced levels of most key esters in ripe fruit. Differences in the ripe fruit aroma could be perceived by sensory analysis. The transgenic lines also showed altered ratios of biosynthetic precursor alcohols and aldehydes, and expression of a number of ester biosynthetic genes increased, presumably in response to the increased substrate pool. These results indicate that the AAT1 locus is critical for the biosynthesis of esters contributing to a 'ripe apple' flavour.


Asunto(s)
Acetiltransferasas/genética , Ésteres/metabolismo , Malus/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Acetiltransferasas/metabolismo , Acetiltransferasas/fisiología , Mapeo Cromosómico , Regulación hacia Abajo , Estudios de Asociación Genética , Ligamiento Genético , Variación Genética , Malus/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente/metabolismo
11.
Plant J ; 74(3): 398-410, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23398045

RESUMEN

We have identified in apple (Malus × domestica) three chalcone synthase (CHS) genes. In order to understand the functional redundancy of this gene family RNA interference knockout lines were generated where all three of these genes were down-regulated. These lines had no detectable anthocyanins and radically reduced concentrations of dihydrochalcones and flavonoids. Surprisingly, down-regulation of CHS also led to major changes in plant development, resulting in plants with shortened internode lengths, smaller leaves and a greatly reduced growth rate. Microscopic analysis revealed that these phenotypic changes extended down to the cellular level, with CHS-silenced lines showing aberrant cellular organisation in the leaves. Fruit collected from one CHS-silenced line was smaller than the 'Royal Gala' controls, lacked flavonoids in the skin and flesh and also had changes in cell morphology. Auxin transport experiments showed increased rates of auxin transport in a CHS-silenced line compared with the 'Royal Gala' control. As flavonoids are well known to be key modulators of auxin transport, we hypothesise that the removal of almost all flavonoids from the plant by CHS silencing creates a vastly altered environment for auxin transport to occur and results in the observed changes in growth and development.


Asunto(s)
Aciltransferasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Malus/enzimología , Fenotipo , Interferencia de ARN , Aciltransferasas/genética , Transporte Biológico , Forma de la Célula , Chalconas/metabolismo , Activación Enzimática , Flavanonas , Frutas/anatomía & histología , Frutas/enzimología , Frutas/genética , Genes de Plantas , Prueba de Complementación Genética , Ácidos Indolacéticos/metabolismo , Malus/anatomía & histología , Malus/genética , Florizina , Células Vegetales/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética
12.
Plant J ; 73(6): 1044-56, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23236986

RESUMEN

Flowering plants utilize different floral structures to develop flesh tissue in fruits. Here we show that suppression of the homeologous SEPALLATA1/2-like genes MADS8 and MADS9 in the fleshy fruit apple (Malus x domestica) leads to sepaloid petals and greatly reduced fruit flesh. Immunolabelling of cell-wall epitopes and differential staining showed that the developing hypanthium (from which the apple flesh develops) of MADS8/9-suppressed apple flowers lacks a tissue layer, and the remaining flesh tissue of fully developed apples has considerably smaller cells. From these observations, it is proposed that MADS8 and MADS9 control the development of discrete zones within the hypanthium tissue, and therefore fruit flesh, and also act as foundations for development of different floral organs. At fruit maturity, the MADS8/9-suppressed apples do not ripen in terms of both developmentally controlled ripening characters, such as starch degradation, and ethylene-modulated ripening traits. Transient assays suggest that, like the RIN gene in tomato, the MADS9 gene acts as a transcriptional activator of the ethylene biosynthesis enzyme, 1-aminocyclopropane-1-carboxylate (ACC) synthase 1. The existence of a single class of genes that regulate both flesh formation and ripening provides an evolutionary tool for controlling two critical aspects of fleshy fruit development.


Asunto(s)
Frutas/fisiología , Malus/crecimiento & desarrollo , Malus/genética , Proteínas de Plantas/genética , Pared Celular/inmunología , Pared Celular/metabolismo , ADN sin Sentido , Flores/genética , Flores/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Liasas/genética , Liasas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
13.
Plant Biotechnol J ; 11(4): 408-19, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23130849

RESUMEN

Consumers of whole foods, such as fruits, demand consistent high quality and seek varieties with enhanced health properties, convenience or novel taste. We have raised the polyphenolic content of apple by genetic engineering of the anthocyanin pathway using the apple transcription factor MYB10. These apples have very high concentrations of foliar, flower and fruit anthocyanins, especially in the fruit peel. Independent lines were examined for impacts on tree growth, photosynthesis and fruit characteristics. Fruit were analysed for changes in metabolite and transcript levels. Fruit were also used in taste trials to study the consumer perception of such a novel apple. No negative taste attributes were associated with the elevated anthocyanins. Modification with this one gene provides near isogenic material and allows us to examine the effects on an established cultivar, with a view to enhancing consumer appeal independently of other fruit qualities.


Asunto(s)
Malus/crecimiento & desarrollo , Malus/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Antocianinas/metabolismo , Biotecnología/métodos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Malus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
14.
Plant Cell Rep ; 32(5): 703-14, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23494389

RESUMEN

KEY MESSAGE: Apple acetolactate synthase mutants were generated by site-specific mutagenesis and successfully used as selection marker in tobacco and apple transformation. T-DNA/Apple genome junctions were analysed using genome-walking PCR and sequencing. An Agrobacterium-mediated genetic transformation system was developed for apple (Malus × domestica), using mutants of apple acetolactate synthase (ALS) as a selectable marker. Four apple ALS mutants were generated by site-specific mutagenesis and subsequently cloned under the transcriptional control of the CaMV 35S promoter and ocs 3' terminator, in a pART27-derived plant transformation vector. Three of the four mutations were found to confer resistance to the herbicide Glean(®), containing the active agent chlorsulfuron, in tobacco (Nicotiana tabacum) transformation. In apple transformation, leaf explants infected with Agrobacterium tumefaciens EHA105 containing one of the three ALS mutants resulted in the production of shoots on medium containing 2-8 µg L(-1) Glean(®), whilst uninfected wild-type explants failed to regenerate shoots or survive on medium containing 1 and 3 µg L(-1) Glean(®), respectively. Glean(®)-resistant, regenerated shoots were further multiplied and rooted on medium containing 10 µg L(-1) Glean(®). The T-DNA and apple genome-DNA junctions from eight rooted transgenic apple plants were analysed using genome-walking PCR amplification and sequencing. This analysis confirmed T-DNA integration into the apple genome, identified the genome integration sites and revealed the extent of any vector backbone integration, T-DNA rearrangements and deletions of apple genome DNA at the sites of integration.


Asunto(s)
Acetolactato Sintasa/genética , Marcadores Genéticos , Resistencia a los Herbicidas/genética , Malus/genética , Agrobacterium tumefaciens , Secuencia de Bases , ADN Bacteriano , Vectores Genéticos , Malus/efectos de los fármacos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Selección Genética , Sulfonamidas/farmacología , Nicotiana/genética , Triazinas/farmacología
15.
Front Plant Sci ; 14: 1235963, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818320

RESUMEN

There have been a considerable number of studies that have successfully sped up the flowering cycle in woody perennial horticultural species. One particularly successful study in apple (Malus domestica) accelerated flowering using a silver birch (Betula pendula) APETALA1/FRUITFULL MADS-box gene BpMADS4, which yielded a good balance of vegetative growth to support subsequent flower and fruit development. In this study, BpMADS4 was constitutively expressed in European pear (Pyrus communis) to establish whether this could be used as a tool in a rapid pear breeding program. Transformed pear lines flowered within 6-18 months after grafting onto a quince (Cydonia oblonga) rootstock. Unlike the spindly habit of early flowering apples, the early flowering pear lines displayed a normal tree-like habit. Like apple, the flower appearance was normal, and the flowers were fertile, producing fruit and seed upon pollination. Seed from these transformed lines were germinated and 50% of the progeny flowered within 3 months of sowing, demonstrating a use for these in a fast breeding program.

16.
Hortic Res ; 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35039859

RESUMEN

BABY BOOM (BBM) is a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family and its expression has been shown to improve herbaceous plant transformation and regeneration. However, this improvement has not been shown clearly for tree species. This study demonstrated that the efficiency of transgenic apple (Malus domestica Borkh.) plant production was dramatically increased by ectopic expression of the MdBBM1 gene. "Royal Gala" apple plants were first transformed with a CaMV35S-MdBBM1 construct (MBM) under kanamycin selection. These MBM transgenic plants exhibited enhanced shoot regeneration from leaf explants on tissue culture media, with most plants displaying a close-to-normal phenotype compared with CaMV35S-GUS transgenic plants when grown under greenhouse conditions, the exception being that some plants had slightly curly leaves. Thin leaf sections revealed the MBM plants produced more cells than the GUS plants, indicating that ectopic-expression of MdBBM1 enhanced cell division. Transcriptome analysis showed that mRNA levels for cell division activators and repressors linked to hormone (auxin, cytokinin and brassinosteroid) signalling pathways were enhanced and reduced, respectively, in the MBM plants compared with the GUS plants. Plants of eight independent MBM lines were compared with the GUS plants by re-transforming them with an herbicide-resistant gene construct. The number of transgenic plants produced per 100 leaf explants was 0-3% for the GUS plants, 3-8% for five MBM lines, and 20-30% for three MBM lines. Our results provided a solution for overcoming the barriers to transgenic plant production in apple, and possibly in other trees.

17.
Methods Enzymol ; 671: 63-98, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35878994

RESUMEN

Carotenoid compounds accumulate to confer coloration to plant tissues and have some established health benefits in humans. These pigments have antioxidant properties and are precursors of vitamin A, which is important for human vision. Apple is widely consumed globally, but most commercial apple cultivars have low fruit carotenoid content because these pigments accumulate mostly in the fruit skin rather than the flesh (the majority of the edible portion). Although carotenoids accumulate in the early stages of fruit development, much of this carotenoid is lost by fruit maturity as a result of low biosynthetic rate, rapid turnover of compounds and/or lack of storage capacity in these tissues. Improving apple fruit carotenoid content through traditional breeding or genetic technologies, will take a long time because of the extended juvenile phase of the trees and limited germplasm diversity within many commercial breeding programs. This process, however, can be accelerated by fundamental understanding of the apple carotenoid biosynthetic pathway and the mechanisms controlling the metabolic steps. The availability of a well annotated apple genome sequence has led to the identification of apple carotenoid gene families and potential transcription factors. This is an important step since the knowledge could be used to elevate carotenoid content either through breeding or genetic transformation techniques. Here, we provide an overview of carotenogenesis in apple and outline the methods employed to improve the carotenoid content of this horticultural crop.


Asunto(s)
Malus , Vías Biosintéticas/genética , Carotenoides/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Humanos , Malus/genética , Malus/metabolismo , Proteínas de Plantas/metabolismo
18.
Front Plant Sci ; 13: 967143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186009

RESUMEN

Knowledge of the transcriptional regulation of the carotenoid metabolic pathway is still emerging and here, we have misexpressed a key biosynthetic gene in apple to highlight potential transcriptional regulators of this pathway. We overexpressed phytoene synthase (PSY1), which controls the key rate-limiting biosynthetic step, in apple and analyzed its effects in transgenic fruit skin and flesh using two approaches. Firstly, the effects of PSY overexpression on carotenoid accumulation and gene expression was assessed in fruit at different development stages. Secondly, the effect of light exclusion on PSY1-induced fruit carotenoid accumulation was examined. PSY1 overexpression increased carotenoid content in transgenic fruit skin and flesh, with beta-carotene being the most prevalent carotenoid compound. Light exclusion by fruit bagging reduced carotenoid content overall, but carotenoid content was still higher in bagged PSY fruit than in bagged controls. In tissues overexpressing PSY1, plastids showed accelerated chloroplast to chromoplast transition as well as high fluorescence intensity, consistent with increased number of chromoplasts and carotenoid accumulation. Surprisingly, the expression of other carotenoid pathway genes was elevated in PSY fruit, suggesting a feed-forward regulation of carotenogenesis when this enzyme step is mis-expressed. Transcriptome profiling of fruit flesh identified differentially expressed transcription factors (TFs) that also were co-expressed with carotenoid pathway genes. A comparison of differentially expressed genes from both the developmental series and light exclusion  treatment revealed six candidate TFs exhibiting strong correlation with carotenoid accumulation. This combination of physiological, transcriptomic and metabolite data sheds new light on plant carotenogenesis and TFs that may play a role in regulating apple carotenoid biosynthesis.

19.
Hortic Res ; 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35039839

RESUMEN

MicroRNA172 (miR172) plays a role in regulating a diverse range of plant developmental processes, including flowering, fruit development and nodulation. However, its role in regulating flavonoid biosynthesis is unclear. In this study, we show that transgenic apple plants over-expressing miR172 show a reduction in red coloration and anthocyanin accumulation in various tissue types. This reduction was consistent with decreased expression of APETALA2 homolog MdAP2_1a (a miR172 target gene), MdMYB10, and targets of MdMYB10, as demonstrated by both RNA-seq and qRT-PCR analyses. The positive role of MdAP2_1a in regulating anthocyanin biosynthesis was supported by the enhanced petal anthocyanin accumulation in transgenic tobacco plants overexpressing MdAP2_1a, and by the reduction in anthocyanin accumulation in apple and cherry fruits transfected with an MdAP2_1a virus-induced-gene-silencing construct. We demonstrated that MdAP2_1a could bind directly to the promoter and protein sequences of MdMYB10 in yeast and tobacco, and enhance MdMYB10 promotor activity. In Arabidopsis, over-expression of miR172 reduced flavonoid (including anthocyanins and flavonols) concentration and RNA transcript abundance of flavonoid genes in plantlets cultured on medium containing 7% sucrose. The anthocyanin content and RNA abundance of anthocyanin genes could be partially restored by using a synonymous mutant of MdAP2_1a, which had lost the miR172 target sequences at mRNA level, but not restored by using a WT MdAP2_1a. These results indicate that miR172 inhibits flavonoid biosynthesis through suppressing the expression of an AP2 transcription factor that positively regulates MdMYB10.

20.
Tree Physiol ; 41(8): 1510-1523, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-33564851

RESUMEN

DORMANCY-ASSOCIATED MADS-box (DAM) and SHORT VEGETATIVE PHASE (SVP) genes have been implicated in the regulation of winter dormancy in perennials. Ectopic expression of apple (Malus × domestica Borkh. 'Royal Gala') DAM and SVP genes delays budbreak and constrains lateral shoot outgrowth. In this study, we used RNA interference (RNAi) to simultaneously target all apple DAM and SVP genes in order to study their role and mode of action in the regulation of bud dormancy, budbreak and flowering. A synthetic construct carrying a hairpin fragment assembled from sequences specific to coding regions of three DAM and two SVP genes was used to generate transgenic lines. Reduced expression of DAM/SVP genes resulted in delayed leaf senescence and abscission in autumn, failure to enter bud dormancy in winter and continual growth of new leaves regardless of the season for over 3 years. Precocious flowering but normal flower morphology, fertility and fruit development were observed. The non-dormant phenotype was associated with modified phytohormone composition. The content of gibberellins (GAs) and jasmonates (JAs) was significantly increased in terminal buds of RNAi lines compared with wildtype plants, accompanied by elevated expression of the key GA biosynthesis pathway gene GIBBERELLIN 20 OXIDASE-2 (MdGA20ox-2) along with the FLOWERING LOCUS T gene MdFT2. The key mediator of plasmodesmatal closure, MdCALLOSE SYNTHASE 1 (MdCALS1), was repressed in RNAi lines. This study provides functional evidence for the role of DAM/SVP genes in vegetative phenology of apple and paves the way for production of low-chill varieties suitable for growth in warming climates.


Asunto(s)
Malus , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA