RESUMEN
Fatty acids are metabolized by ß-oxidation within the "mitochondrial ketogenic pathway" (MKP) to generate ß-hydroxybutyrate (BHB), a ketone body. BHB can be generated by most cells but largely by hepatocytes following exercise, fasting, or ketogenic diet consumption. BHB has been shown to modulate systemic and brain inflammation; however, its direct effects on microglia have been little studied. We investigated the impact of BHB on Aß oligomer (AßO)-stimulated human iPS-derived microglia (hiMG), a model relevant to the pathogenesis of Alzheimer's disease (AD). HiMG responded to AßO with proinflammatory activation, which was mitigated by BHB at physiological concentrations of 0.1-2 mM. AßO stimulated glycolytic transcripts, suppressed genes in the ß-oxidation pathway, and induced over-expression of AD-relevant p46Shc, an endogenous inhibitor of thiolase, actions that are expected to suppress MKP. AßO also triggered mitochondrial Ca2+ increase, mitochondrial reactive oxygen species production, and activation of the mitochondrial permeability transition pore. BHB potently ameliorated all the above mitochondrial changes and rectified the MKP, resulting in reduced inflammasome activation and recovery of the phagocytotic function impaired by AßO. These results indicate that microglia MKP can be induced to modulate microglia immunometabolism, and that BHB can remedy "keto-deficiency" resulting from MKP suppression and shift microglia away from proinflammatory mitochondrial metabolism. These effects of BHB may contribute to the beneficial effects of ketogenic diet intervention in aged mice and in human subjects with mild AD.
Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Animales , Ratones , Ácido 3-Hidroxibutírico/farmacología , Péptidos beta-Amiloides , Cuerpos Cetónicos , InflamaciónRESUMEN
BACKGROUND AND AIMS: Older patients with obesity/type II diabetes mellitus frequently present with advanced NASH. Whether this is due to specific molecular pathways that accelerate fibrosis during aging is unknown. Activation of the Src homology 2 domain-containing collagen-related (Shc) proteins and redox stress have been recognized in aging; however, their link to NASH has not been explored. APPROACH AND RESULTS: Shc expression increased in livers of older patients with NASH, as assessed by real time quantitative PCR (RT-qPCR) or western blots. Fibrosis, Shc expression, markers of senescence, and nicotinamide adenine dinucleotide phosphate, reduced form oxidases (NOXs) were studied in young/old mice on fast food diet (FFD). To inhibit Shc in old mice, lentiviral (LV)-short hairpin Shc versus control-LV were used during FFD. For hepatocyte-specific effects, floxed (fl/fl) Shc mice on FFD were injected with adeno-associated virus 8-thyroxine-binding globulin-Cre-recombinase versus control. Fibrosis was accelerated in older mice on FFD, and Shc inhibition by LV in older mice or hepatocyte-specific deletion resulted in significantly improved inflammation, reduction in senescence markers in older mice, lipid peroxidation, and fibrosis. To study NOX2 activation, the interaction of p47phox (NOX2 regulatory subunit) and p52Shc was evaluated by proximity ligation and coimmunoprecipitations. Palmitate-induced p52Shc binding to p47phox , activating the NOX2 complex, more so at an older age. Kinetics of binding were assessed in Src homology 2 domain (SH2) or phosphotyrosine-binding (PTB) domain deletion mutants by biolayer interferometry, revealing the role of SH2 and the PTB domains. Lastly, an in silico model of p52Shc/p47phox interaction using RosettaDock was generated. CONCLUSIONS: Accelerated fibrosis in the aged is modulated by p52Shc/NOX2. We show a pathway for direct activation of the phagocytic NOX2 in hepatocytes by p52Shc binding and activating the p47phox subunit that results in redox stress and accelerated fibrosis in the aged.
Asunto(s)
Envejecimiento/metabolismo , NADPH Oxidasa 2/fisiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Animales , Hepatocitos/metabolismo , Humanos , Cirrosis Hepática/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Adaptadoras de la Señalización Shc/antagonistas & inhibidores , Proteínas Adaptadoras de la Señalización Shc/fisiología , Dominios Homologos srcRESUMEN
Shc expression rises in human nonalcoholic steatohepatitis (NASH) livers, and Shc-deficient mice are protected from NASH-thus Shc inhibition could be a novel therapeutic strategy for NASH. Idebenone was recently identified as the first small-molecule Shc inhibitor drug. We tested idebenone in the fibrotic methionine-choline deficient (MCD) diet and the metabolic fast food diet (FFD) mouse models of NASH. In the fibrotic MCD NASH model, idebenone reduced Shc expression and phosphorylation in peripheral blood mononuclear cells and Shc expression in the liver; decreased serum alanine aminotransferase and aspartate aminotransferase; and attenuated liver fibrosis as observed by quantitative polymerase chain reaction (qPCR) and hydroxyproline quantification. In the metabolic FFD model, idebenone administration improved insulin resistance, and reduced inflammation and fibrosis shown with qPCR, hydroxyproline measurement, and histology. Thus, idebenone ameliorates NASH in two mouse models. As an approved drug with a benign safety profile, Idebenone could be a reasonable human NASH therapy.
Asunto(s)
Dieta/efectos adversos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Sustancias Protectoras/administración & dosificación , Proteínas Adaptadoras de la Señalización Shc/antagonistas & inhibidores , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquinona/análogos & derivados , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Deficiencia de Colina/complicaciones , Modelos Animales de Enfermedad , Comida Rápida/efectos adversos , Leucocitos Mononucleares/metabolismo , Hígado/lesiones , Hígado/metabolismo , Cirrosis Hepática/sangre , Cirrosis Hepática/complicaciones , Masculino , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Fosforilación/efectos de los fármacos , Terapéutica , Ubiquinona/administración & dosificaciónRESUMEN
When insulin binds insulin receptor, IRS1 signaling is stimulated to trigger the maximal insulin response. p52Shc protein competes directly with IRS1, thus damping and diverting maximal insulin response. Genetic reduction of p52Shc minimizes competition with IRS1, and improves insulin signaling and glucose control in mice, and improves pathophysiological consequences of hyperglycemia. Given the multiple benefits of Shc reduction in vivo, we investigated whether any of 1680 drugs used in humans may function as Shc inhibitors, and thus potentially serve as novel anti-diabetics. Of the 1680, 30 insulin sensitizers were identified by screening in vitro, and of these 30 we demonstrated that 7 bound Shc protein. Of the 7 drugs, idebenone dose-dependently bound Shc protein in the 50-100 nM range, and induced insulin sensitivity and cytoprotection in this same 100 nM range that clinically dosed idebenone reaches in human plasma. By contrast we observe mitochondrial effects of idebenone in the 5,000 nM range that are not reached in human dosing. Multiple assays of target engagement demonstrate that idebenone physically interacts with Shc protein. Idebenone sensitizes mice to insulin in two different mouse models of prediabetes. Genetic depletion of idebenone's target eliminates idebenone's ability to insulin-sensitize in vivo. Thus, idebenone is the first-in-class member of a novel category of insulin-sensitizing and cytoprotective agents, the Shc inhibitors. Idebenone is an approved drug and could be considered for other indications such as type 2 diabetes and fatty liver disease, in which insulin resistance occurs.
Asunto(s)
Hipoglucemiantes/farmacología , Resistencia a la Insulina , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/antagonistas & inhibidores , Ubiquinona/análogos & derivados , Animales , Línea Celular , Citoprotección , Diabetes Mellitus Experimental/tratamiento farmacológico , Reposicionamiento de Medicamentos , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Insulina/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Simulación del Acoplamiento Molecular , Receptor de Insulina/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Ubiquinona/farmacologíaRESUMEN
Although the p46Shc isoform has been known to be mitochondrially localized for 11 years, its function in mitochondria has been a mystery. We confirmed p46Shc to be mitochondrially localized and showed that the major mitochondrial partner of p46Shc is the lipid oxidation enzyme 3-ketoacylCoA thiolase ACAA2, to which p46Shc binds directly and with a strong affinity. Increasing p46Shc expression inhibits, and decreasing p46Shc stimulates enzymatic activity of thiolase in vitro Thus, we suggest p46Shc to be a negative mitochondrial thiolase activity regulator, and reduction of p46Shc expression activates thiolase. This is the first demonstration of a protein that directly binds and controls thiolase activity. Thiolase was thought previously only to be regulated by metabolite balance and steady-state flux control. Thiolase is the last enzyme of the mitochondrial fatty acid beta-oxidation spiral, and thus is important for energy metabolism. Mice with reduction of p46Shc are lean, resist obesity, have higher lipid oxidation capacity, and increased thiolase activity. The thiolase-p46Shc connection shown here in vitro and in organello may be an important underlying mechanism explaining the metabolic phenotype of Shc-depleted mice in vivo.
Asunto(s)
Acetil-CoA C-Aciltransferasa/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Acetil-CoA C-Aciltransferasa/genética , Animales , Unión Competitiva , Western Blotting , Línea Celular , Metabolismo Energético , Ácidos Grasos/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Células 3T3 NIH , Oxidación-Reducción , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , Proteínas Adaptadoras de la Señalización Shc/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genéticaRESUMEN
Macrophage activation is an important feature of primary biliary cholangitis (PBC) pathogenesis and other cholestatic liver diseases. Galectin-3 (Gal3), a pleiotropic lectin, is produced by monocytic cells and macrophages. However, its role in PBC has not been addressed. We hypothesized that Gal3 is a key to induce NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in macrophages and in turn to propagate proinflammatory IL-17 signaling. In liver tissues from patients with PBC and dnTGF-ßRII mice, a model of autoimmune cholangitis, the expression of Gal3, NLRP3, and the adaptor protein adaptor apoptosis-associated speck-like protein was induced, with the downstream activation of caspase-1 and IL-1ß. In wild-type hepatic macrophages, deoxycholic acid induced the association of Gal3 and NLRP3 with direct activation of the inflammasome, resulting in an increase in IL-1ß. Downstream retinoid-related orphan receptor C mRNA, IL-17A, and IL-17F were induced. In Gal3-/- macrophages, no inflammasome activation was detected. To confirm the key role of Gal3 in the pathogenesis of cholestatic liver injury, we generated dnTGF-ßRII/galectin-3-/- (dn/Gal3-/-) mice, which showed impaired inflammasome activation along with significantly improved inflammation and fibrosis. Taken together, our data point to a novel role of Gal3 as an initiator of inflammatory signaling in autoimmune cholangitis, mediating the activation of NLRP3 inflammasome and inducing IL-17 proinflammatory cascades. These studies provide a rationale to target Gal3 in autoimmune cholangitis and potentially other cholestatic diseases.-Tian, J., Yang, G., Chen, H.-Y., Hsu, D. K., Tomilov, A., Olson, K. A., Dehnad, A., Fish, S. R., Cortopassi, G., Zhao, B., Liu, F.-T., Gershwin, M. E., Török, N. J., Jiang, J. X. Galectin-3 regulates inflammasome activation in cholestatic liver injury.
Asunto(s)
Galectina 3/metabolismo , Inflamasomas/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Transducción de Señal/fisiología , Animales , Caspasa 1/metabolismo , Células Cultivadas , Galectina 3/genética , Humanos , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Hígado/lesiones , Activación de Macrófagos/fisiología , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismoRESUMEN
The Ketogenic Diet (KD) improves memory and longevity in aged C57BL/6 mice. We tested 7 months KD vs. control diet (CD) in the mouse Alzheimer's Disease (AD) model APP/PS1. KD significantly rescued Long-Term-Potentiation (LTP) to wild-type levels, not by changing Amyloid-ß (Aß) levels. KD's 'main actor' is thought to be Beta-Hydroxy-butyrate (BHB) whose levels rose significantly in KD vs. CD mice, and BHB itself significantly rescued LTP in APP/PS1 hippocampi. KD's 6 most significant pathways induced in brains by RNAseq all related to Synaptic Plasticity. KD induced significant increases in synaptic plasticity enzymes p-ERK and p-CREB in both sexes, and of brain-derived neurotrophic factor (BDNF) in APP/PS1 females. We suggest KD rescues LTP through BHB's enhancement of synaptic plasticity. LTP falls in Mild-Cognitive Impairment (MCI) of human AD. KD and BHB, because they are an approved diet and supplement respectively, may be most therapeutically and translationally relevant to the MCI phase of Alzheimer's Disease.
Asunto(s)
Enfermedad de Alzheimer , Dieta Cetogénica , Humanos , Ratones , Animales , Anciano , Potenciación a Largo Plazo , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Ratones Endogámicos C57BL , Plasticidad NeuronalRESUMEN
The rhizosphere is teemed with organisms that coordinate their symbioses using chemical signals traversing between the host root and symbionts. Chemical signals also mediate interactions between roots of different plants, perhaps the most obvious being those between parasitic Orobanchaceae and their plant hosts. Parasitic plants use specific molecules provided by host roots to initiate the development of haustoria, invasive structures critical for plant parasitism. We took a transcriptomics approach to identify parasitic plant genes associated with host factor recognition and haustorium signaling and previously identified a gene, TvPirin, which is transcriptionally up-regulated in roots of the parasitic plant Triphysaria versicolor after being exposed to the haustorium-inducing molecule 2,6-dimethoxybenzoquinone (DMBQ). Because TvPirin shares homology with proteins associated with environmental signaling in some plants, we hypothesized that TvPirin may function in host factor recognition in parasitic plants. We tested the function of TvPirin in T. versicolor roots using hairpin-mediated RNA interference. Reducing TvPirin transcripts in T. versicolor roots resulted in significantly less haustoria development in response to DMBQ exposure. We determined the transcript levels of other root expressed transcripts and found that several had reduced basal levels of gene expression but were similarly regulated by quinone exposure. Phylogenic investigations showed that TvPirin homologs are present in most flowering plants, and we found no evidence of parasite-specific gene duplication or expansion. We propose that TvPirin is a generalized transcription factor associated with the expression of a number of genes, some of which are involved in haustorium development.
Asunto(s)
Genes de Plantas , Orobanchaceae/fisiología , Benzoquinonas/farmacología , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Datos de Secuencia Molecular , Orobanchaceae/clasificación , Orobanchaceae/genética , Filogenia , Transcripción GenéticaRESUMEN
Parasitic plants in the Orobanchaceae develop haustoria in response to contact with host roots or chemical haustoria-inducing factors. Experiments in this manuscript test the hypothesis that quinolic-inducing factors activate haustorium development via a signal mechanism initiated by redox cycling between quinone and hydroquinone states. Two cDNAs were previously isolated from roots of the parasitic plant Triphysaria versicolor that encode distinct quinone oxidoreductases. QR1 encodes a single-electron reducing NADPH quinone oxidoreductase similar to zeta-crystallin. The QR2 enzyme catalyzes two electron reductions typical of xenobiotic detoxification. QR1 and QR2 transcripts are upregulated in a primary response to chemical-inducing factors, but only QR1 was upregulated in response to host roots. RNA interference technology was used to reduce QR1 and QR2 transcripts in Triphysaria roots that were evaluated for their ability to form haustoria. There was a significant decrease in haustorium development in roots silenced for QR1 but not in roots silenced for QR2. The infrequent QR1 transgenic roots that did develop haustoria had levels of QR1 similar to those of nontransgenic roots. These experiments implicate QR1 as one of the earliest genes on the haustorium signal transduction pathway, encoding a quinone oxidoreductase necessary for the redox bioactivation of haustorial inducing factors.
Asunto(s)
NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Orobanchaceae/enzimología , Proteínas de Plantas/metabolismo , Raíces de Plantas/parasitología , ADN Complementario/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos , NAD(P)H Deshidrogenasa (Quinona)/genética , Orobanchaceae/genética , Orobanchaceae/crecimiento & desarrollo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Interferencia de ARN , ARN de Planta/genética , Transducción de SeñalRESUMEN
BACKGROUND & AIMS: Src homology and collagen (Shc) proteins are major adapters to extracellular signals, however, the regulatory role of Shc isoforms in sterile inflammatory responses in alcoholic hepatitis (AH) has not been fully investigated. We hypothesized that in an isoform-specific manner Shc modulates pre-apoptotic signals, calreticulin (CRT) membrane exposure, and recruitment of inflammatory cells. METHODS: Liver biopsy samples from patients with AH vs healthy subjects were studied for Shc expression using DNA microarray data and immunohistochemistry. Shc knockdown (hypomorph) and age-matched wild-type mice were pair-fed according to the chronic-plus-binge alcohol diet. To analyze hepatocyte-specific effects, adeno-associated virus 8-thyroxine binding globulin-Cre (hepatocyte-specific Shc knockout)-mediated deletion was performed in flox/flox Shc mice. Lipid peroxidation, proinflammatory signals, redox radicals, reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide ratio, as well as cleaved caspase 8, B-cell-receptor-associated protein 31 (BAP31), Bcl-2-associated X protein (Bax), and Bcl-2 homologous antagonist killer (Bak), were assessed in vivo. CRT translocation was studied in ethanol-exposed p46ShcáºSH2-transfected hepatocytes by membrane biotinylation in conjunction with phosphorylated-eukaryotic initiation factor 2 alpha, BAP31, caspase 8, and Bax/Bak. The effects of idebenone, a novel Shc inhibitor, was studied in alcohol/pair-fed mice. RESULTS: Shc was significantly induced in patients with AH (P < .01). Alanine aminotransferase, reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide ratios, production of redox radicals, and lipid peroxidation improved (P < .05), and interleukin 1ß, monocyte chemoattractant protein 1, and C-X-C chemokine ligand 10 were reduced in Shc knockdown and hepatocyte-specific Shc knockout mice. In vivo, Shc-dependent induction, and, in hepatocytes, a p46Shc-dependent increase in pre-apoptotic proteins Bax/Bak, caspase 8, BAP31 cleavage, and membrane translocation of CRT/endoplasmic reticulum-resident protein 57 were seen. Idebenone protected against alcohol-mediated liver injury. CONCLUSIONS: Alcohol induces p46Shc-dependent activation of pre-apoptotic pathways and translocation of CRT to the membrane, where it acts as a damage-associated molecular pattern, instigating immunogenicity. Shc inhibition could be a novel treatment strategy in AH.
Asunto(s)
Hepatitis Alcohólica , Ratones , Animales , Proteína X Asociada a bcl-2 , Caspasa 8 , Calreticulina , NAD , Ratones Noqueados , Etanol , Inflamación , ColágenoRESUMEN
A decrease in reactive oxygen species (ROS) production has been associated with extended life span in animal models of longevity. Mice deficient in the p66Shc gene are long-lived, and their cells are both resistant to oxidative stress and produce less ROS. Our microarray analysis of p66Shc(-/-) mouse tissues showed alterations in transcripts involved in heme and superoxide production and insulin signaling. Thus, we carried out analysis of ROS production by NADPH oxidase (PHOX) in macrophages of control and p66Shc knock-out mice. p66Shc(-/-) mice had a 40% reduction in PHOX-dependent superoxide production. To confirm whether the defect in superoxide production was a direct consequence of p66Shc deficiency, p66Shc was knocked down with siRNA in the macrophage cell line RAW264, and a 30% defect in superoxide generation was observed. The pathway of PHOX-dependent superoxide generation was investigated. PHOX protein levels were not decreased in mutant macrophages; however, the rate and extent of phosphorylation of p47phox was decreased in mutants, as was membrane translocation of the complex. Consistently, phosphorylation of protein kinase Cdelta, Akt, and ERK (the kinases responsible for phosphorylation of p47phox) was decreased. Thus, p66Shc deficiency causes a defect in activation of the PHOX complex that results in decreased superoxide production. p66Shc-deficient mice have recently been observed to be resistant to atherosclerosis and to oxidant injury in kidney and brain. Because phagocyte-derived superoxide is often a component of oxidant injury and inflammation, we suggest that the decreased superoxide production by PHOX in p66Shc-deficient mice could contribute significantly to their relative protection from oxidant injury and consequent longevity.
Asunto(s)
Longevidad , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Proteínas Adaptadoras de la Señalización Shc , Superóxidos/metabolismo , Animales , Línea Celular , Activación Enzimática/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Ratones , Ratones Noqueados , NADPH Oxidasas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de SrcRESUMEN
AMP-activated protein kinase (AMPK) is a eukaryotic energy sensor and protector from mitochondrial/energetic stress that is also a therapeutic target for cancer and metabolic disease. Metformin is an AMPK inducer that has been used in cancer therapeutic trials. Through screening we isolated cetylpyridinium chloride (CPC), a drug known to dose-dependently inhibit mitochondrial complex 1, as a potent and dose-dependent AMPK stimulator. Mitochondrial biogenesis and bioenergetics changes have also been implicated in glioblastoma, which is the most aggressive form of brain tumors. Cetylpyridinium chloride has been administered in humans as a safe drug-disinfectant for several decades, and we report here that under in vitro conditions, cetylpyridinium chloride kills glioblastoma cells in a dose dependent manner at a higher efficacy compared to current standard of care drug, temozolomide.
Asunto(s)
Adenilato Quinasa/metabolismo , Antineoplásicos/farmacología , Cetilpiridinio/farmacología , Hepatocitos/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Animales , Antiinfecciosos Locales/farmacología , Línea Celular , Supervivencia Celular , Glioma/tratamiento farmacológico , Humanos , RatonesRESUMEN
Glioblastoma (GBM) is an aggressive tumor of the brain, with an average post-diagnosis survival of 15 months. GBM stem cells (GBMSC) resist the standard-of-care therapy, temozolomide, and are considered a major contributor to tumor resistance. Mammalian target of rapamycin Complex 1 (mTORC1) regulates cell proliferation and has been shown by others to have reduced activity in GBMSC. We recently identified a novel chemical series of human-safe piperazine-based brain-penetrant mTORC1-specific inhibitors. We assayed the piperazine-mTOR binding strength by two biophysical measurements, biolayer interferometry and field-effect biosensing, and these confirmed each other and demonstrated a structure-activity relationship. As mTORC1 is altered in human GBMSC, and as mTORC1 inhibitors have been tested in previous GBM clinical trials, we tested the killing potency of the tightest-binding piperazines and observed that these were potent GBMSC killers. GBMSCs are resistant to the standard-of-care temozolomide therapy, but temozolomide supplemented with tight-binding piperazine meclizine and flunarizine greatly enhanced GBMSC death over temozolomide alone. Lastly, we investigated IDH1-mutated GBMSC mutations that are known to affect mitochondrial and mTORC1 metabolism, and the tight-binding meclizine provoked 'synthetic lethality' in IDH1-mutant GBMSCs. In other words, IDH1-mutated GBMSC showed greater sensitivity to the coadministration of temozolomide and meclizine. These data tend to support a novel clinical strategy for GBM, i.e., the co-administration of meclizine or flunarizine as adjuvant therapy in the treatment of GBM and IDH1-mutant GBM.
RESUMEN
There has been little innovation in identifying novel insulin sensitizers. Metformin, developed in the 1920s, is still used first for most Type 2 diabetes patients. Mice with genetic reduction of p52Shc protein have improved insulin sensitivity and glucose tolerance. By high-throughput screening, idebenone was isolated as the first small molecule 'Shc Blocker'. Idebenone blocks p52Shc's access to Insulin Receptor to increase insulin sensitivity. In this work the avidity of 34 novel idebenone analogs and 3 metabolites to bind p52Shc, and to block the interaction of p52Shc with the Insulin receptor was tested. Our hypothesis was that if an idebenone analog bound and blocked p52Shc's access to insulin receptor better than idebenone, it should be a more effective insulin sensitizing agent than idebenone itself. Of 34 analogs tested, only 2 both bound p52Shc more tightly and/or blocked the p52Shc-Insulin Receptor interaction more effectively than idebenone. Of those 2 only idebenone analog #11 was a superior insulin sensitizer to idebenone. Also, the long-lasting insulin-sensitizing potency of idebenone in rodents over many hours had been puzzling, as the parent molecule degrades to metabolites within 1 h. We observed that two of the idebenone's three metabolites are insulin sensitizing almost as potently as idebenone itself, explaining the persistent insulin sensitization of this rapidly metabolized molecule. These results help to identify key SAR = structure-activity relationship requirements for more potent small molecule Shc inhibitors as Shc-targeted insulin sensitizers for type 2 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptor de Insulina/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Ubiquinona/análogos & derivados , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Ubiquinona/química , Ubiquinona/farmacologíaRESUMEN
Species of Orobanchaceae parasitize the roots of nearby host plants to rob them of water and other nutrients. Parasitism can be debilitating to the host plant, and some of the world's most pernicious agricultural pests are parasitic weeds. We demonstrate here that interfering hairpin constructs transformed into host plants can silence expression of the targeted genes in the parasite. Transgenic roots of the hemi-parasitic plant Triphysaria versicolor expressing the GUS reporter gene were allowed to parasitize transgenic lettuce roots expressing a hairpin RNA containing a fragment of the GUS gene (hpGUS). When stained for GUS activity, Triphysaria roots attached to non-transgenic lettuce showed full GUS activity, but those parasitizing transgenic hpGUS lettuce lacked activity in root tissues distal to the haustorium. Transcript quantification indicated a reduction in the steady-state level of GUS mRNA in Triphysaria when they were attached to hpGUS lettuce. These results demonstrate that the GUS silencing signal generated by the host roots was translocated across the haustorium interface and was functional in the parasite. Movement across the haustorium was bi-directional, as demonstrated in double-junction experiments in which non-transgenic Triphysaria concomitantly parasitized two hosts, one transgenic for hpGUS and the other transgenic for a functional GUS gene. Observation of GUS silencing in the second host demonstrated that the silencing trigger could be moved from one host to another using the parasite as a physiological bridge. Silencing of parasite genes by generating siRNAs in the host provides a novel strategy for controlling parasitic weeds.
Asunto(s)
Interacciones Huésped-Parásitos/genética , Lactuca/parasitología , Orobanchaceae/genética , Interferencia de ARN , Transducción de Señal/genética , Arabidopsis/genética , Arabidopsis/parasitología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros , Lactuca/genética , Orobanchaceae/metabolismo , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/parasitología , ARN de Planta/genética , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la EspecieRESUMEN
Inhibition of mTOR activity (mechanistic target of rapamycin) is an anti-cancer therapeutic strategy. mTOR participates in two functional complexes, mTORC1 and mTORC2. Since mTORC1 is specifically activated in multiple tumors, novel molecules that inhibit mTORC1 could be therapeutically important. To identify potentially novel modulators of mTOR pathways, we screened 1600 small molecule human drugs for mTOR protein binding, using novel biolayer interferometry technology. We identified several small molecules that bound to mTOR protein in a dose-dependent manner, on multiple chemical scaffolds. As mTOR participates in two major complexes, mTORC1 and mTORC2, the functional specificities of the binders were measured by S6Kinase and Akt phosphorylation assays. Three novel 'mTOR general' binders were identified, carvedilol, testosterone propionate, and hydroxyprogesterone, which inhibited both mTORC1 and mTORC2. By contrast, the piperazine drug cinnarizine dose-dependently inhibited mTORC1 but not mTORC2, suggesting it as a novel mTORC1-specific inhibitor. Some of cinnarizine's chemical analogs also inhibited mTORC1 specifically, whereas others did not. Thus we report the existence of a novel target for some related piperazines including cinnarizine and hydroxyzine, i.e. specific inhibition of mTORC1 activity. Since mTOR inhibition is a general anti-cancer strategy, and mTORC1 is specifically activated in some tumors, we suggest the piperazine scaffold, including cinnarizine and hydroxyzine, could be proposed for rational therapy in tumors in which mTORC1 is specifically activated. Related piperazines have shown toxicity to cancer cells in vitro as single agents and in combination chemotherapy. Thus piperazine-based mTOR inhibitors could become a novel chemotherapeutic strategy.
Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Animales , Carvedilol/metabolismo , Carvedilol/farmacología , Cinarizina/metabolismo , Cinarizina/farmacología , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Ratones , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Sirolimus/metabolismo , Sirolimus/farmacologíaRESUMEN
BACKGROUND: Quaternary ammonium salts (QUATS), such as cetylpyridinium chloride (CPC) and benzalkonium chloride (BAK), are frequently used in antiseptic formulations, including toothpastes, mouthwashes, lozenges, throat and nasal sprays, and as biocides. Although in a recent ruling, the U.S. Food and Drug Administration (FDA) banned CPC from certain products and requested more data on BAK's efficacy and safety profile, QUATS, in general, and CPC and BAK, in particular, continue to be used in personal health care, food, and pharmaceutical and cleaning industries. OBJECTIVES: We aimed to assess CPC's effects on mitochondrial toxicity and endocrine disruption in vitro. METHOD: Mitochondrial O2 consumption and adenosine triphosphate (ATP) synthesis rates of osteosarcoma cybrid cells were measured before and after CPC and BAK treatment. Antiestrogenic effects of the compounds were measured by a luciferase-based assay using recombinant human breast carcinoma cells (VM7Luc4E2, ERalpha-positive). RESULTS: CPC inhibited both mitochondrial O2 consumption [half maximal inhibitory concentration (IC50): 3.8µM] and ATP synthesis (IC50: 0.9µM), and additional findings supported inhibition of mitochondrial complex 1 as the underlying mechanism for these effects. In addition, CPC showed concentration-dependent antiestrogenic activity half maximal effective concentration [(EC50): 4.5µM)]. BAK, another antimicrobial QUATS that is structurally similar to CPC, and the pesticide rotenone, a known complex 1 inhibitor, also showed mitochondrial inhibitory and antiestrogenic effects. In all three cases, there was overlap of the antiestrogenic activity with the mitochondrial inhibitory activity. CONCLUSIONS: Mitochondrial inhibition in vitro occurred at a CPC concentration that may be relevant to human exposures. The antiestrogenic activity of CPC, BAK, rotenone, and triclosan may be related to their mitochondrial inhibitory activity. Our findings support the need for additional research on the mitochondrial inhibitory and antiestrogenic effects of QUATS, including CPC and BAK. https://doi.org/10.1289/EHP1404.
Asunto(s)
Antiinfecciosos Locales/toxicidad , Cetilpiridinio/toxicidad , Línea Celular Tumoral , Humanos , Mitocondrias/efectos de los fármacosRESUMEN
ErbB (Erythroblastic Leukemia Viral Oncogene Homolog) receptor tyrosine kinases are critical for tissue development and maintenance, and frequently become oncogenic when mutated or overexpressed. In vitro analysis of ErbB receptor kinases can be difficult because of their large size and poor water solubility. Here we report improved production and assembly of the correctly folded full-length EGF receptor (EGFR) into nanolipoprotein particles (NLPs). NLPs are ~10 nm in diameter discoidal cell membrane mimics composed of apolipoproteins surrounding a lipid bilayer. NLPs containing EGFR were synthesized via incubation of baculovirus-produced recombinant EGFR with apolipoprotein and phosphoplipids under conditions that favor self-assembly. The resulting EGFR-NLPs were the correct size, formed dimers and multimers, had intrinsic autophosphorylation activity, and retained the ability to interact with EGFR-targeted ligands and inhibitors consistent with previously-published in vitro binding affinities. We anticipate rapid adoption of EGFR-NLPs for structural studies of full-length receptors and drug screening, as well as for the in vitro characterization of ErbB heterodimers and disease-relevant mutants.
Asunto(s)
Receptores ErbB/química , Receptores ErbB/genética , Membrana Dobles de Lípidos/química , Nanopartículas/química , Apolipoproteínas/biosíntesis , Apolipoproteínas/química , Receptores ErbB/administración & dosificación , Humanos , Membranas Artificiales , Nanopartículas/administración & dosificación , Solubilidad , Agua/químicaRESUMEN
Calorie restriction, without malnutrition, has been shown to increase lifespan and is associated with a shift away from glycolysis toward beta-oxidation. The objective of this study was to mimic this metabolic shift using low-carbohydrate diets and to determine the influence of these diets on longevity and healthspan in mice. C57BL/6 mice were assigned to a ketogenic, low-carbohydrate, or control diet at 12 months of age and were either allowed to live their natural lifespan or tested for physiological function after 1 or 14 months of dietary intervention. The ketogenic diet (KD) significantly increased median lifespan and survival compared to controls. In aged mice, only those consuming a KD displayed preservation of physiological function. The KD increased protein acetylation levels and regulated mTORC1 signaling in a tissue-dependent manner. This study demonstrates that a KD extends longevity and healthspan in mice.
Asunto(s)
Dieta Cetogénica , Salud , Longevidad/fisiología , Acetilación , Adaptación Fisiológica , Animales , Dieta Baja en Carbohidratos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Especificidad de Órganos , Transducción de SeñalRESUMEN
Inherited mitochondrial complex I mutations cause blinding Leber's hereditary optic neuropathy (LHON), for which no curative therapy exists. A specific biochemical consequence of LHON mutations in the presence of trace rotenone was observed: deficient complex I-dependent ATP synthesis (CIDAS) and mitochondrial O2 consumption, proportional to the clinical severity of the three primary LHON mutations. We optimized a high-throughput assay of CIDAS to screen 1600 drugs to 2, papaverine and zolpidem, which protected CIDAS in LHON cells concentration-dependently. TSPO and cAMP were investigated as protective mechanisms, but a conclusive mechanism remains to be elucidated; next steps include testing in animal models.