Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37242916

RESUMEN

Polyimide (PI) with ultra-high thermal resistance and stability is essential for application as a flexible substrate in electronic devices. Here, the Upilex-type polyimides, which contained flexibly "twisted" 4,4'-oxydianiline (ODA), have achieved various performance improvements via copolymerization with a diamine containing benzimidazole structure. With the rigid benzimidazole-based diamine bearing conjugated heterocyclic moieties and hydrogen bond donors fused into the PI backbone, the benzimidazole-containing PI showed outstanding thermal, mechanical, and dielectric performance. Specifically, the PI containing 50% bis-benzimidazole diamine achieved a 5% decomposition temperature at 554 °C, an excellent high glass transition temperature of 448 °C, and a coefficient of thermal expansion lowered to 16.1 ppm/K. Meanwhile, the tensile strength and modulus of the PI films containing 50% mono-benzimidazole diamine increased to 148.6 MPa and 4.1 GPa, respectively. Due to the synergistic effect of rigid benzimidazole and hinged, flexible ODA, all PI films exhibited an elongation at break above 4.3%. The electrical insulation of the PI films was also improved with a dielectric constant lowered to 1.29. In summary, with appropriate mixing of rigid and flexible moieties in the PI backbone, all the PI films showed superior thermal stability, excellent flexibility, and acceptable electrical insulation.

2.
RSC Adv ; 8(20): 11119-11126, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35541504

RESUMEN

Enhancing the azimuthal anchoring energy of the aligning film is a key requirement to improve the quality of liquid-crystal displays. Based on the assumption of mesogenic side groups being able to align liquid-crystal (LC) molecules, we have designed a novel transparent polyimide bearing cyanobiphenyl mesogenic side chains, which has a similar structure to that of liquid crystal 5CB. A pyrimidyl diamine monomer with a cyanobiphenyl mesogenic unit was first synthesized, and then co-polymerized with 4,4'-diaminodiphenyl ether and 4,4'-oxydiphthalic anhydride. The obtained polyimide (PI) exhibited good thermal stability and mechanical properties, as well as high optical transparency with transmittance of up to 86% in the wavelength range 450-700 nm. By evaluating the adhesion force between PI films and LCs with a super-sensitive microelectro-mechanical balance system, we have verified that appending mesogenic groups on the side chains of PI strengthens intermolecular interactions between the LC and PI surfaces, thereby enhancing the surface anchoring energy. Compared with the unmodified PI, the anchoring energy of the derivatized PI was improved more than 2.2-fold. By virtue of its good transparency and strong anchoring energy, this PI would seem to be an ideal candidate as a LC alignment film, and the concept of mesogens aligning LCs may open a new door in the design of LC alignment films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA