Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Immunity ; 54(5): 1055-1065.e5, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33945786

RESUMEN

Efforts are being made worldwide to understand the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, including the impact of T cell immunity and cross-recognition with seasonal coronaviruses. Screening of SARS-CoV-2 peptide pools revealed that the nucleocapsid (N) protein induced an immunodominant response in HLA-B7+ COVID-19-recovered individuals that was also detectable in unexposed donors. A single N-encoded epitope that was highly conserved across circulating coronaviruses drove this immunodominant response. In vitro peptide stimulation and crystal structure analyses revealed T cell-mediated cross-reactivity toward circulating OC43 and HKU-1 betacoronaviruses but not 229E or NL63 alphacoronaviruses because of different peptide conformations. T cell receptor (TCR) sequencing indicated that cross-reactivity was driven by private TCR repertoires with a bias for TRBV27 and a long CDR3ß loop. Our findings demonstrate the basis of selective T cell cross-reactivity for an immunodominant SARS-CoV-2 epitope and its homologs from seasonal coronaviruses, suggesting long-lasting protective immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Epítopos Inmunodominantes/inmunología , SARS-CoV-2/inmunología , Secuencia de Aminoácidos , Coronavirus/clasificación , Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/química , Reacciones Cruzadas , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Antígeno HLA-B7/química , Antígeno HLA-B7/genética , Antígeno HLA-B7/inmunología , Humanos , Epítopos Inmunodominantes/química , Memoria Inmunológica , Modelos Moleculares , Péptidos/química , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología
2.
Cell Mol Life Sci ; 81(1): 35, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214784

RESUMEN

Diabetes mellitus is on the rise globally and is a known susceptibility factor for severe influenza virus infections. However, the mechanisms by which diabetes increases the severity of an influenza virus infection are yet to be fully defined. Diabetes mellitus is hallmarked by high glucose concentrations in the blood. We hypothesized that these high glucose concentrations affect the functionality of CD8+ T cells, which play a key role eliminating virus-infected cells and have been shown to decrease influenza disease severity. To study the effect of hyperglycemia on CD8+ T cell function, we stimulated peripheral blood mononuclear cells (PBMCs) from donors with and without diabetes with influenza A virus, anti-CD3/anti-CD28-coated beads, PMA and ionomycin (PMA/I), or an influenza viral peptide pool. After stimulation, cells were assessed for functionality [as defined by expression of IFN-γ, TNF-α, macrophage inflammatory protein (MIP)-1ß, and lysosomal-associated membrane protein-1 (CD107a)] using flow cytometry. Our results showed that increasing HbA1c correlated with a reduction in TNF-α production by CD8+ T cells in response to influenza stimulation in a TCR-specific manner. This was not associated with any changes to CD8+ T cell subsets. We conclude that hyperglycemia impairs CD8+ T cell function to influenza virus infection, which may be linked with the increased risk of severe influenza in patients with diabetes.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Virus de la Influenza A , Gripe Humana , Humanos , Linfocitos T CD8-positivos/metabolismo , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Hemoglobina Glucada , Hiperglucemia/metabolismo , Leucocitos Mononucleares/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Clin Infect Dis ; 72(12): e1146-e1153, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33283240

RESUMEN

The role of children in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains highly controversial. To address this issue, we performed a meta-analysis of the published literature on household SARS-CoV-2 transmission clusters (n = 213 from 12 countries). Only 8 (3.8%) transmission clusters were identified as having a pediatric index case. Asymptomatic index cases were associated with a lower secondary attack in contacts than symptomatic index cases (estimate risk ratio [RR], 0.17; 95% confidence interval [CI], 0.09-0.29). To determine the susceptibility of children to household infections the secondary attack rate in pediatric household contacts was assessed. The secondary attack rate in pediatric household contacts was lower than in adult household contacts (RR, 0.62; 95% CI, 0.42-0.91). These data have important implications for the ongoing management of the COVID-19 pandemic, including potential vaccine prioritization strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Composición Familiar , Humanos , Incidencia , Pandemias
4.
Nat Commun ; 14(1): 3680, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369668

RESUMEN

In vitro, ACE2 translocates to the nucleus to induce SARS-CoV-2 replication. Here, using digital spatial profiling of lung tissues from SARS-CoV-2-infected golden Syrian hamsters, we show that a specific and selective peptide inhibitor of nuclear ACE2 (NACE2i) inhibits viral replication two days after SARS-CoV-2 infection. Moreover, the peptide also prevents inflammation and macrophage infiltration, and increases NK cell infiltration in bronchioles. NACE2i treatment increases the levels of the active histone mark, H3K27ac, restores host translation in infected hamster bronchiolar cells, and leads to an enrichment in methylated ACE2 in hamster bronchioles and lung macrophages, a signature associated with virus protection. In addition, ACE2 methylation is increased in myeloid cells from vaccinated patients and associated with reduced SARS-CoV-2 spike protein expression in monocytes from individuals who have recovered from infection. This protective epigenetic scarring of ACE2 is associated with a reduced latent viral reservoir in monocytes/macrophages and enhanced immune protection against SARS-CoV-2. Nuclear ACE2 may represent a therapeutic target independent of the variant and strain of viruses that use the ACE2 receptor for host cell entry.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , Pulmón/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Péptidos/metabolismo , Epigénesis Genética
5.
FEBS J ; 288(17): 5042-5054, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34216102

RESUMEN

The COVID-19 pandemic has highlighted the vulnerability of people with diabetes mellitus (DM) to respiratory viral infections. Despite the short history of COVID-19, various studies have shown that patients with DM are more likely to have increased hospitalisation and mortality rates as compared to patients without. At present, the mechanisms underlying this susceptibility are unclear. However, prior studies show that the course of COVID-19 disease is linked to the efficacy of the host's T-cell responses. Healthy individuals who can elicit a robust T-cell response are more likely to limit the severity of COVID-19. Here, we investigate the hypothesis that an impaired T-cell response in patients with type 2 diabetes mellitus (T2DM) drives the severity of COVID-19 in this patient population. While there is currently a limited amount of information that specifically addresses T-cell responses in COVID-19 patients with T2DM, there is a wealth of evidence from other infectious diseases that T-cell immunity is impaired in patients with T2DM. The reasons for this are likely multifactorial, including the presence of hyperglycaemia, glycaemic variability and metformin use. This review emphasises the need for further research into T-cell responses of COVID-19 patients with T2DM in order to better inform our response to COVID-19 and future disease outbreaks.


Asunto(s)
COVID-19/inmunología , Diabetes Mellitus Tipo 2/inmunología , Hiperglucemia/inmunología , Linfocitos T/inmunología , COVID-19/complicaciones , COVID-19/patología , COVID-19/virología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/virología , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/patología , Hiperglucemia/virología , Pandemias , SARS-CoV-2/patogenicidad , Linfocitos T/virología
6.
Genes (Basel) ; 12(6)2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200798

RESUMEN

Highly pathogenic avian influenza viruses (HPAIVs) in gallinaceous poultry are associated with viral infection of the endothelium, the induction of a 'cytokine storm, and severe disease. In contrast, in Pekin ducks, HPAIVs are rarely endothelial tropic, and a cytokine storm is not observed. To date, understanding these species-dependent differences in pathogenesis has been hampered by the absence of a pure culture of duck and chicken endothelial cells. Here, we use our recently established in vitro cultures of duck and chicken aortic endothelial cells to investigate species-dependent differences in the response of endothelial cells to HPAIV H5N1 infection. We demonstrate that chicken and duck endothelial cells display a different transcriptional response to HPAI H5N1 infection in vitro-with chickens displaying a more pro-inflammatory response to infection. As similar observations were recorded following in vitro stimulation with the viral mimetic polyI:C, these findings were not specific to an HPAIV H5N1 infection. However, similar species-dependent differences in the transcriptional response to polyI:C were not observed in avian fibroblasts. Taken together, these data demonstrate that chicken and duck endothelial cells display a different response to HPAIV H5N1 infection, and this may help account for the species-dependent differences observed in inflammation in vivo.


Asunto(s)
Pollos/inmunología , Patos/inmunología , Células Endoteliales/virología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Animales , Células Cultivadas , Pollos/virología , Citocinas/genética , Citocinas/metabolismo , Patos/virología , Células Endoteliales/inmunología , Endotelio Vascular/citología , Especificidad de la Especie , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA