Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(28): 10311-6, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24958881

RESUMEN

An essential step in the invasion of red blood cells (RBCs) by Plasmodium falciparum (Pf) merozoites is the binding of rhoptry neck protein 2 (RON2) to the hydrophobic groove of apical membrane antigen 1 (AMA1), triggering junction formation between the apical end of the merozoite and the RBC surface to initiate invasion. Vaccination with AMA1 provided protection against homologous parasites in one of two phase 2 clinical trials; however, despite its ability to induce high-titer invasion-blocking antibodies in a controlled human challenge trial, the vaccine conferred little protection even against the homologous parasite. Here we provide evidence that immunization with an AMA1-RON2 peptide complex, but not with AMA1 alone, provided complete protection against a lethal Plasmodium yoelii challenge in mice. Significantly, IgG from mice immunized with the complex transferred protection. Furthermore, IgG from PfAMA1-RON2-immunized animals showed enhanced invasion inhibition compared with IgG elicited by AMA1 alone. Interestingly, this qualitative increase in inhibitory activity appears to be related, at least in part, to a switch in the proportion of IgG specific for certain loop regions in AMA1 surrounding the binding site of RON2. Antibodies induced by the complex were not sufficient to block the FVO strain heterologous parasite, however, reinforcing the need to include multiallele AMA1 to cover polymorphisms. Our results suggest that AMA1 subunit vaccines may be highly effective when presented to the immune system as an invasion complex with RON2.


Asunto(s)
Antígenos de Protozoos/farmacología , Eritrocitos/inmunología , Inmunización , Vacunas contra la Malaria/farmacología , Malaria Falciparum/inmunología , Proteínas de la Membrana/farmacología , Complejos Multiproteicos/farmacología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/farmacología , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Eritrocitos/parasitología , Humanos , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Malaria Falciparum/genética , Malaria Falciparum/prevención & control , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos BALB C , Complejos Multiproteicos/genética , Complejos Multiproteicos/inmunología , Plasmodium falciparum/genética , Plasmodium yoelii/genética , Plasmodium yoelii/inmunología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología
2.
J Biol Chem ; 289(20): 13962-73, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24675080

RESUMEN

Toxoplasma gondii, an apicomplexan parasite prevalent in developed nations, infects up to one-third of the human population. The success of this parasite depends on several unique structures including an inner membrane complex (IMC) that lines the interior of the plasma membrane and contains proteins important for gliding motility and replication. Of these proteins, the IMC sub-compartment proteins (ISPs) have recently been shown to play a role in asexual T. gondii daughter cell formation, yet the mechanism is unknown. Complicating mechanistic characterization of the ISPs is a lack of sequence identity with proteins of known structure or function. In support of elucidating the function of ISPs, we first determined the crystal structures of representative members TgISP1 and TgISP3 to a resolution of 2.10 and 2.32 Å, respectively. Structural analysis revealed that both ISPs adopt a pleckstrin homology fold often associated with phospholipid binding or protein-protein interactions. Substitution of basic for hydrophobic residues in the region that overlays with phospholipid binding in related pleckstrin homology domains, however, suggests that ISPs do not retain phospholipid binding activity. Consistent with this observation, biochemical assays revealed no phospholipid binding activity. Interestingly, mapping of conserved surface residues combined with crystal packing analysis indicates that TgISPs have functionally repurposed the phospholipid-binding site likely to coordinate protein partners. Recruitment of larger protein complexes may also be aided through avidity-enhanced interactions resulting from multimerization of the ISPs. Overall, we propose a model where TgISPs recruit protein partners to the IMC to ensure correct progression of daughter cell formation.


Asunto(s)
Proteínas Sanguíneas/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Fosfoproteínas/química , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Homología de Secuencia de Aminoácido , Toxoplasma/fisiología , Secuencia de Aminoácidos , Secuencia Conservada , Disulfuros/química , Modelos Moleculares , Datos de Secuencia Molecular , Fosfolípidos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Toxoplasma/citología , Toxoplasma/metabolismo
3.
Mol Microbiol ; 91(3): 618-34, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24303899

RESUMEN

The mechanisms that facilitate dissemination of the highly invasive spirochaete, Treponema pallidum, are incompletely understood. Previous studies showed the treponemal metalloprotease pallilysin (Tp0751) possesses fibrin clot degradation capability, suggesting a role in treponemal dissemination. In the current study we report characterization of the functionally linked protein Tp0750. Structural modelling predicts Tp0750 contains a von Willebrand factor type A (vWFA) domain, a protein-protein interaction domain commonly observed in extracellular matrix (ECM)-binding proteins. We report Tp0750 is a serine protease that degrades the major clot components fibrinogen and fibronectin. We also demonstrate Tp0750 cleaves a matrix metalloprotease (MMP) peptide substrate that is targeted by several MMPs, enzymes central to ECM remodelling. Through proteomic analyses we show Tp0750 binds the endothelial fibrinolytic receptor, annexin A2, in a specific and dose-dependent manner. These results suggest Tp0750 constitutes a multifunctional protein that is able to (1) degrade infection-limiting clots by both inhibiting clot formation through degradation of host coagulation cascade proteins and promoting clot dissolution by complexing with host proteins involved in the fibrinolytic cascade and (2) facilitate ECM degradation via MMP-like proteolysis of host components. We propose that through these activities Tp0750 functions in concert with pallilysin to enable T. pallidum dissemination.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fibrinógeno/metabolismo , Fibrinólisis , Fibronectinas/metabolismo , Serina Proteasas/metabolismo , Treponema pallidum/enzimología , Anexina A2/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Serina Proteasas/química , Serina Proteasas/genética , Treponema pallidum/genética
4.
J Comput Aided Mol Des ; 29(6): 525-39, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25822046

RESUMEN

Invasion of the red blood cell by Plasmodium falciparum parasites requires formation of an electron dense circumferential ring called the Moving Junction (MJ). The MJ is anchored by a high affinity complex of two parasite proteins: Apical Membrane Antigen 1 (PfAMA1) displayed on the surface of the parasite and Rhoptry Neck Protein 2 that is discharged from the parasite and imbedded in the membrane of the host cell. Structural studies of PfAMA1 revealed a conserved hydrophobic groove localized to the apical surface that coordinates RON2 and invasion inhibitory peptides. In the present work, we employed computational and biophysical methods to identify competitive P. falciparum AMA1-RON2 inhibitors with the goal of exploring the 'druggability' of this attractive antimalarial target. A virtual screen followed by molecular docking with the PfAMA1 crystal structure was performed using an eight million compound collection that included commercial molecules, the ChEMBL malaria library and approved drugs. The consensus approach resulted in the selection of inhibitor candidates. We also developed a fluorescence anisotropy assay using a modified inhibitory peptide to experimentally validate the ability of the selected compounds to inhibit the AMA1-RON2 interaction. Among those, we identified one compound that displayed significant inhibition. This study offers interesting clues to improve the throughput and reliability of screening for new drug leads.


Asunto(s)
Antígenos de Protozoos/metabolismo , Antimaláricos/química , Antimaláricos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Antígenos de Protozoos/química , Biofisica , Diseño Asistido por Computadora , Polarización de Fluorescencia , Concentración 50 Inhibidora , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Receptores de Superficie Celular/antagonistas & inhibidores , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/química , Resonancia por Plasmón de Superficie , Flujo de Trabajo
5.
J Biol Chem ; 288(18): 12805-17, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23511632

RESUMEN

Plasmodium falciparum is the most devastating agent of human malaria. A major contributor to its virulence is a complex lifecycle with multiple parasite forms, each presenting a different repertoire of surface antigens. Importantly, members of the 6-Cys s48/45 family of proteins are found on the surface of P. falciparum in every stage, and several of these antigens have been investigated as vaccine targets. Pf12 is the archetypal member of the 6-Cys protein family, containing just two s48/45 domains, whereas other members have up to 14 of these domains. Pf12 is strongly recognized by immune sera from naturally infected patients. Here we show that Pf12 is highly conserved and under purifying selection. Immunofluorescence data reveals a punctate staining pattern with an apical organization in late schizonts. Together, these data are consistent with an important functional role for Pf12 in parasite-host cell attachment or invasion. To infer the structural and functional diversity between Pf12 and the other 11 6-Cys domain proteins, we solved the 1.90 Å resolution crystal structure of the Pf12 ectodomain. Structural analysis reveals a unique organization between the membrane proximal and membrane distal domains and clear homology with the SRS-domain containing proteins of Toxoplasma gondii. Cross-linking and mass spectrometry confirm the previously identified Pf12-Pf41 heterodimeric complex, and analysis of individual cross-links supports an unexpected antiparallel organization. Collectively, the localization and structure of Pf12 and details of its interaction with Pf41 reveal important insight into the structural and functional properties of this archetypal member of the 6-Cys protein family.


Asunto(s)
Antígenos de Protozoos/química , Plasmodium falciparum/química , Esquizontes/química , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Humanos , Plasmodium falciparum/genética , Estructura Terciaria de Proteína , Esquizontes/inmunología
6.
PLoS Pathog ; 8(6): e1002755, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737069

RESUMEN

Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ) between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics.


Asunto(s)
Antígenos de Protozoos/química , Interacciones Huésped-Parásitos/fisiología , Proteínas de la Membrana/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/metabolismo , Membrana Celular/metabolismo , Cristalización , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Plasmodium falciparum/metabolismo , Polimorfismo Genético , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas Protozoarias/metabolismo , Resonancia por Plasmón de Superficie
7.
BMC Struct Biol ; 12: 16, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22747601

RESUMEN

BACKGROUND: S100 proteins are a family of small, EF-hand containing calcium-binding signaling proteins that are implicated in many cancers. While the majority of human S100 proteins share 25-65% sequence similarity, S100A7 and its recently identified paralog, S100A15, display 93% sequence identity. Intriguingly, however, S100A7 and S100A15 serve distinct roles in inflammatory skin disease; S100A7 signals through the receptor for advanced glycation products (RAGE) in a zinc-dependent manner, while S100A15 signals through a yet unidentified G-protein coupled receptor in a zinc-independent manner. Of the seven divergent residues that differentiate S100A7 and S100A15, four cluster in a zinc-binding region and the remaining three localize to a predicted receptor-binding surface. RESULTS: To investigate the structural and functional consequences of these divergent clusters, we report the X-ray crystal structures of S100A15 and S100A7D24G, a hybrid variant where the zinc ligand Asp24 of S100A7 has been substituted with the glycine of S100A15, to 1.7 Å and 1.6 Å resolution, respectively. Remarkably, despite replacement of the Asp ligand, zinc binding is retained at the S100A15 dimer interface with distorted tetrahedral geometry and a chloride ion serving as an exogenous fourth ligand. Zinc binding was confirmed using anomalous difference maps and solution binding studies that revealed similar affinities of zinc for S100A15 and S100A7. Additionally, the predicted receptor-binding surface on S100A7 is substantially more basic in S100A15 without incurring structural rearrangement. CONCLUSIONS: Here we demonstrate that S100A15 retains the ability to coordinate zinc through incorporation of an exogenous ligand resulting in a unique zinc-binding site among S100 proteins. The altered surface chemistry between S100A7 and S100A15 that localizes to the predicted receptor binding site is likely responsible for the differential recognition of distinct protein targets. Collectively, these data provide novel insight into the structural and functional consequences of the divergent surfaces between S100A7 and S100A15 that may be exploited for targeted therapies.


Asunto(s)
Receptores de Superficie Celular/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Sitios de Unión , Complejo del Señalosoma COP9 , Cristalografía por Rayos X , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Péptido Hidrolasas/metabolismo , Unión Proteica , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/metabolismo , Proteína A7 de Unión a Calcio de la Familia S100 , Propiedades de Superficie
9.
Artículo en Inglés | MEDLINE | ID: mdl-22750877

RESUMEN

The protozoan parasites of the Apicomplexa phylum are devastating global pathogens. Their success is largely due to phylum-specific proteins found in specialized organelles and cellular structures. The inner membrane complex (IMC) is a unique apicomplexan structure that is essential for motility, invasion and replication. The IMC subcompartment proteins (ISP) have recently been identified in Toxoplasma gondii and shown to be critical for replication, although their specific mechanisms are unknown. Structural characterization of TgISP1 was pursued in order to identify the fold adopted by the ISPs and to generate detailed insight into how this family of proteins functions during replication. An N-terminally truncated form of TgISP1 was purified from Escherichia coli, crystallized and subjected to X-ray diffraction analysis. Two crystal forms of TgISP1 belonging to space groups P4(1)32 or P4(3)32 and P2(1)2(1)2(1) diffracted to 2.05 and 2.1 Šresolution, respectively.


Asunto(s)
Proteínas de la Membrana/química , Proteínas Protozoarias/química , Toxoplasma/química , Cristalización , Cristalografía por Rayos X , Proteínas de la Membrana/aislamiento & purificación , Proteínas Protozoarias/aislamiento & purificación
10.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 12): 1503-6, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23192033

RESUMEN

Trypanosoma congolense is a major contributor to the vast socioeconomic devastation in sub-Saharan Africa caused by animal African trypanosomiasis. These protozoan parasites are transmitted between mammalian hosts by tsetse-fly vectors. A lack of understanding of the molecular basis of tsetse-trypanosome interactions stands as a barrier to the development of improved control strategies. Recently, a stage-specific T. congolense protein, T. congolense insect-stage surface antigen (TcCISSA), was identified that shows considerable sequence identity (>60%) to a previously identified T. brucei insect-stage surface molecule that plays a role in the maturation of infections. TcCISSA has multiple di-amino-acid and tri-amino-acid repeats in its extracellular domain, making it an especially interesting structure-function target. The predicted mature extracellular domain of TcCISSA was produced by recombinant DNA techniques, purified from Escherichia coli, crystallized and subjected to X-ray diffraction analysis; the data were processed to 2.7 Šresolution.


Asunto(s)
Antígenos de Superficie/química , Antígenos de Superficie/aislamiento & purificación , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificación , Trypanosoma congolense/inmunología , Animales , Cristalización , Cristalografía por Rayos X , Insectos Vectores/metabolismo , Tripanosomiasis Africana/inmunología , Difracción de Rayos X
11.
J Biol Chem ; 285(20): 15644-15652, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20304917

RESUMEN

Apical membrane antigen 1 (AMA1) is an essential component of the moving junction complex used by Apicomplexan parasites to invade host cells. We report the 2.0 A resolution x-ray crystal structure of the full ectodomain (domains I, II, and III) of AMA1 from the pervasive protozoan parasite Toxoplasma gondii. The structure of T. gondii AMA1 (TgAMA1) is the most complete of any AMA1 structure to date, with more than 97.5% of the ectodomain unambiguously modeled. Comparative sequence analysis reveals discrete segments of divergence in TgAMA1 that map to areas of established functional importance in AMA1 from Plasmodium vivax (PvAMA1) and Plasmodium falciparum (PfAMA1). Inspection of the TgAMA1 structure reveals a network of apical surface loops, reorganized in both size and chemistry relative to PvAMA1/PfAMA1, that appear to serve as structural filters restricting access to a central hydrophobic groove. The terminal portion of this groove is formed by an extended loop from DII that is 14 residues shorter in TgAMA1. A pair of tryptophan residues (Trp(353) and Trp(354)) anchor the DII loop in the hydrophobic groove and frame a conserved tyrosine (Tyr(230)), forming a contiguous surface that may be critical for moving junction assembly. The minimalist DIII structure folds into a cystine knot that probably stabilizes and orients the bulk of the ectodmain without providing excess surface area to which invasion-inhibitory antibodies can be generated. The detailed structural characterization of TgAMA1 provides valuable insight into the mechanism of host cell invasion by T. gondii.


Asunto(s)
Antígenos de Protozoos/química , Toxoplasma/inmunología , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/genética , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Filogenia , Homología de Secuencia de Aminoácido
12.
J Mol Biol ; 427(4): 840-852, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25284756

RESUMEN

Parasites of the phylum Apicomplexa are highly successful pathogens of humans and animals worldwide. As obligate intracellular parasites, they have significant energy requirements for invasion and gliding motility that are supplied by various metabolic pathways. Aldolases have emerged as key enzymes involved in these pathways, and all apicomplexans express one or both of fructose 1,6-bisphosphate (F16BP) aldolase and 2-deoxyribose 5-phosphate (dR5P) aldolase (DERA). Intriguingly, Toxoplasma gondii, a highly successful apicomplexan parasite, expresses F16BP aldolase (TgALD1), d5RP aldolase (TgDERA), and a divergent dR5P aldolase-like protein (TgDPA) exclusively in the latent bradyzoite stage. While the importance of TgALD1 in glycolysis is well established and TgDERA is also likely to be involved in parasite metabolism, the detailed function of TgDPA remains elusive. To gain mechanistic insight into the function of different T. gondii aldolases, we first determined the crystal structures of TgALD1 and TgDPA. Structural analysis revealed that both aldolases adopt a TIM barrel fold accessorized with divergent secondary structure elements. Structural comparison of TgALD1 and TgDPA with members of their respective enzyme families revealed that, while the active-site residues are conserved in TgALD1, key catalytic residues are absent in TgDPA. Consistent with this observation, biochemical assays showed that, while TgALD1 was active on F16BP, TgDPA was inactive on dR5P. Intriguingly, both aldolases are competent to bind polymerized actin in vitro. Altogether, structural and biochemical analyses of T. gondii aldolase and aldolase-like proteins reveal diverse functionalization of the classic TIM barrel aldolase fold.


Asunto(s)
Fructosa-Bifosfato Aldolasa/ultraestructura , Proteínas Protozoarias/ultraestructura , Toxoplasma/enzimología , Actinas/metabolismo , Cristalografía por Rayos X , Metabolismo Energético , Fructosa-Bifosfato Aldolasa/química , Fructosadifosfatos/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Ribosamonofosfatos/metabolismo
13.
Nat Commun ; 5: 4098, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24934579

RESUMEN

Malaria and toxoplasmosis are infectious diseases caused by the apicomplexan parasites Plasmodium and Toxoplasma gondii, respectively. These parasites have developed an invasion mechanism involving the formation of a moving junction (MJ) that anchors the parasite to the host cell and forms a ring through which the parasite penetrates. The composition and the assembly of the MJ, and in particular the presence of protein AMA1 and its interaction with protein RON2 at the MJ, have been the subject of intense controversy. Here, using reverse genetics, we show that AMA1, a vaccine candidate, interacts with RON2 to maintain the MJ structural integrity in T. gondii and is subsequently required for parasite internalization. Moreover, we show that disruption of the AMA1 gene results in upregulation of AMA1 and RON2 homologues that cooperate to support residual invasion. Our study highlights a considerable complexity and molecular plasticity in the architecture of the MJ.


Asunto(s)
Antígenos de Protozoos/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/parasitología , Antígenos de Protozoos/genética , Eliminación de Gen , Humanos , Modelos Moleculares , Unión Proteica , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasma/patogenicidad , Virulencia
14.
Protein Sci ; 22(1): 114-27, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23169033

RESUMEN

Host cell invasion by the obligate intracellular apicomplexan parasites, including Plasmodium (malaria) and Toxoplasma (toxoplasmosis), requires a step-wise mechanism unique among known host-pathogen interactions. A key step is the formation of the moving junction (MJ) complex, a circumferential constriction between the apical tip of the parasite and the host cell membrane that traverses in a posterior direction to enclose the parasite in a protective vacuole essential for intracellular survival. The leading model of MJ assembly proposes that Rhoptry Neck Protein 2 (RON2) is secreted into the host cell and integrated into the membrane where it serves as the receptor for apical membrane antigen 1 (AMA1) on the parasite surface. We have previously demonstrated that the AMA1-RON2 interaction is an effective target for inhibiting apicomplexan invasion. To better understand the AMA1-dependant molecular recognition events that promote invasion, including the significant AMA1-RON2 interaction, we present the structural characterization of AMA1 from the apicomplexan parasites Babesia divergens (BdAMA1) and Neospora caninum (NcAMA1) by X-ray crystallography. These studies offer intriguing structural insight into the RON2-binding surface groove in the AMA1 apical domain, which shows clear evidence for receptor-ligand co-evolution, and the hyper variability of the membrane proximal domain, which in Plasmodium is responsible for direct binding to erythrocytes. By incorporating the structural analysis of BdAMA1 and NcAMA1 with existing AMA1 structures and complexes we were able to define conserved pockets in the AMA1 apical groove that could be targeted for the design of broadly reactive therapeutics.


Asunto(s)
Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Babesia/química , Eritrocitos/metabolismo , Eritrocitos/parasitología , Interacciones Huésped-Patógeno , Neospora/química , Antígenos de Protozoos/aislamiento & purificación , Biología Computacional , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica
15.
PLoS One ; 8(8): e70637, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940612

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa. The interaction of two well-studied proteins, Apical Membrane Antigen 1 (AMA1) and Rhoptry Neck protein 2 (RON2), has been shown to be critical for invasion by the asexual tachyzoite stage. Recently, two paralogues of these proteins, dubbed sporoAMA1 and sporoRON2 (or RON2L2), respectively, have been identified but not further characterized in proteomic and transcriptomic analyses of Toxoplasma sporozoites. Here, we show that sporoAMA1 and sporoRON2 localize to the apical region of sporozoites and that, in vitro, they interact specifically and exclusively, with no detectable interaction of sporoAMA1 with generic RON2 or sporoRON2 with generic AMA1. Structural studies of the interacting domains of sporoRON2 and sporoAMA1 indicate a novel pairing that is similar in overall form but distinct in detail from the previously described interaction of the generic pairing. Most notably, binding of sporoRON2 domain 3 to domains I/II of sporoAMA1 results in major alterations in the latter protein at the site of binding and allosterically in the membrane-proximal domain III of sporoAMA1 suggesting a possible role in signaling. Lastly, pretreatment of sporozoites with domain 3 of sporoRON2 substantially impedes their invasion into host cells while having no effect on tachyzoites, and vice versa for domain 3 of generic RON2 (which inhibits tachyzoite but not sporozoite invasion). These data indicate that sporozoites and tachyzoites each use a distinct pair of paralogous AMA1 and RON2 proteins for invasion into host cells, possibly due to the very different environment in which they each must function.


Asunto(s)
Antígenos de Protozoos/química , Proteínas Protozoarias/química , Esporozoítos/fisiología , Toxoplasma/genética , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/metabolismo , Gatos , Células Cultivadas , Secuencia Conservada , Cristalografía por Rayos X , Interacciones Huésped-Parásitos , Humanos , Enlace de Hidrógeno , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Conejos , Toxoplasma/metabolismo
16.
Science ; 333(6041): 463-7, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21778402

RESUMEN

Apicomplexan parasites such as Toxoplasma gondii and Plasmodium species actively invade host cells through a moving junction (MJ) complex assembled at the parasite-host cell interface. MJ assembly is initiated by injection of parasite rhoptry neck proteins (RONs) into the host cell, where RON2 spans the membrane and functions as a receptor for apical membrane antigen 1 (AMA1) on the parasite. We have determined the structure of TgAMA1 complexed with a RON2 peptide at 1.95 angstrom resolution. A stepwise assembly mechanism results in an extensive buried surface area, enabling the MJ complex to resist the mechanical forces encountered during host cell invasion. Besides providing insights into host cell invasion by apicomplexan parasites, the structure offers a basis for designing therapeutics targeting these global pathogens.


Asunto(s)
Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Interacciones Huésped-Parásitos , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Anticuerpos Monoclonales/inmunología , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Protozoarias/inmunología , Toxoplasma/química , Toxoplasma/ultraestructura
17.
Curr Opin Struct Biol ; 20(5): 551-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20843678

RESUMEN

Apicomplexan parasites such as Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis) are significant global pathogens of humans and animals. Unlike many intracellular bacterial and viral pathogens that rely on host cell uptake machinery to gain entry, apicomplexan parasites promote recognition, attachment and ultimately invasion of host cells through an orchestrated delivery of adhesins. While several of these adhesins are now known to target host cell glycans, only recently have atomic level insights been forthcoming. Here we review recent developments in defining detailed molecular blueprints used by these widespread pathogens to drive host cell adhesion and promote infectivity.


Asunto(s)
Apicomplexa/metabolismo , Metabolismo de los Hidratos de Carbono , Parásitos/metabolismo , Proteínas Protozoarias/metabolismo , Secuencias de Aminoácidos , Animales , Apicomplexa/fisiología , Humanos , Parásitos/fisiología , Estructura Terciaria de Proteína , Proteínas Protozoarias/química
18.
Protein Sci ; 19(10): 1985-90, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20684023

RESUMEN

Toxoplasma gondii is a widespread zoonotic pathogen capable of causing serious disease in humans and animals. As an obligate intracellular parasite, T. gondii relies on the orchestrated secretion of proteins from its apical complex organelles including the multimodular, transmembrane micronemal protein 2 (MIC2) that couples recognition of the host cell with cytoskeletal reorganization of the parasite to drive invasion. To probe the basis by which the von Willebrand Factor A (vWA)-Integrin like module of TgMIC2 engages the host cell, we solved the crystal structure of a truncated form of TgMIC2A/I (TgMIC2A/Ic) phased by iodide SIRAS and refined to a resolution of 2.05 Å. The TgMIC2A/Ic core is organized into a central twisted beta sheet flanked by α-helices consistent with a canonical vWA fold. A restricted basic patch serves as the putative heparin binding site, but no heparin binding was detected in native gel shift assays. Furthermore, no metal was observed in the metal ion dependent adhesion site (MIDAS). Structural overlays with homologous A/I domains reveal a divergent organization of the MIDAS ß4-α4 loop in TgMIC2A/Ic, which is stabilized through the burial of Phe195 into a deep pocket formed by Gly185. Intriguingly, Gly185 appears to be unique among A/I domains to TgMIC2A/I suggesting that the divergent loop conformation may also be unique to TgMIC2A/I. Although lacking the C-terminal extension, the TgMIC2A/Ic structure reported here is the first of an A/I domain from an apicomplexan parasite and provides valuable insight into defining the molecular recognition of host cells by these widespread pathogens.


Asunto(s)
Proteínas de la Membrana/química , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Glicina/química , Glicina/genética , Glicina/metabolismo , Heparina/química , Heparina/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática , Relación Estructura-Actividad , Toxoplasma/genética , Toxoplasma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA