RESUMEN
Pontocerebellar hypoplasia (PCH) is a heterogeneous group of neurodegenerative disorders characterized by hypoplasia and degeneration of the cerebellum and pons. We aimed to identify the clinical, laboratory, and imaging findings of the patients with diagnosed PCH with confirmed genetic analysis. We collected available clinical data, laboratory, and imaging findings in our retrospective multicenter national study of 64 patients with PCH in Turkey. The genetic analysis included the whole-exome sequencing (WES), targeted next-generation sequencing (NGS), or single gene analysis. Sixty-four patients with PCH were 28 female (43.8%) and 36 (56.3%) male. The patients revealed homozygous mutation in 89.1%, consanguinity in 79.7%, pregnancy at term in 85.2%, microcephaly in 91.3%, psychomotor retardation in 98.4%, abnormal neurological findings in 100%, seizure in 63.8%, normal biochemistry and metabolic investigations in 92.2%, and dysmorphic findings in 51.2%. The missense mutation was found to be the most common variant type in all patients with PCH. It was detected as CLP1 (n = 17) was the most common PCH related gene. The homozygous missense variant c.419G > A (p.Arg140His) was identified in all patients with CLP1. Moreover, all patients showed the same homozygous missense variant c.919G > T (p.A307S) in TSEN54 group (n = 6). In Turkey, CLP1 was identified as the most common causative gene with the identical variant c.419G > A; p.Arg140His. The current study supports that genotype data on PCH leads to phenotypic variability over a wide phenotypic spectrum.
Asunto(s)
Enfermedades Cerebelosas , Humanos , Femenino , Masculino , Estudios Retrospectivos , Preescolar , Enfermedades Cerebelosas/genética , Enfermedades Cerebelosas/diagnóstico por imagen , Enfermedades Cerebelosas/diagnóstico , Niño , Lactante , Turquía , Adolescente , Mutación , Adulto , Consanguinidad , Adulto JovenRESUMEN
Morbidity and mortality rates in patients with autosomal recessive, congenital generalized lipodystrophy type 4 (CGL4), an ultra-rare disorder, remain unclear. We report on 30 females and 16 males from 10 countries with biallelic null variants in CAVIN1 gene (mean age, 12 years; range, 2 months to 41 years). Hypertriglyceridemia was seen in 79% (34/43), hepatic steatosis in 82% (27/33) but diabetes mellitus in only 21% (8/44). Myopathy with elevated serum creatine kinase levels (346-3325 IU/L) affected all of them (38/38). 39% had scoliosis (10/26) and 57% had atlantoaxial instability (8/14). Cardiac arrhythmias were detected in 57% (20/35) and 46% had ventricular tachycardia (16/35). Congenital pyloric stenosis was diagnosed in 39% (18/46), 9 had esophageal dysmotility and 19 had intestinal dysmotility. Four patients suffered from intestinal perforations. Seven patients died at mean age of 17 years (range: 2 months to 39 years). The cause of death in four patients was cardiac arrhythmia and sudden death, while others died of prematurity, gastrointestinal perforation, and infected foot ulcers leading to sepsis. Our study highlights high prevalence of myopathy, metabolic abnormalities, cardiac, and gastrointestinal problems in patients with CGL4. CGL4 patients are at high risk of early death mainly caused by cardiac arrhythmias.
Asunto(s)
Lipodistrofia Generalizada Congénita , Proteínas de Unión al ARN , Humanos , Masculino , Femenino , Lipodistrofia Generalizada Congénita/genética , Lipodistrofia Generalizada Congénita/complicaciones , Lipodistrofia Generalizada Congénita/patología , Adolescente , Niño , Lactante , Preescolar , Adulto , Adulto Joven , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Hipertrigliceridemia/genética , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/patologíaRESUMEN
Muscular dystrophies are a heterogeneous group of neuromuscular disorders with a wide range of the clinical and genetic spectrum. Whole-exome sequencing (WES) has been on the rise to become the usual method of choice for molecular diagnosis in patients presenting with muscular dystrophy or congenital or metabolic myopathy phenotype. Here, we used a panel with 47 genes including not only muscular dystrophy but also myopathy-associated genes that had been used as a first-tier approach. A total of 146 patients who were referred to our clinic with the prediagnosis of muscular dystrophy and/or myopathy were included in the study. Dystrophin gene deletion/duplication was ruled out on the patients with a preliminary diagnosis of Duchenne muscular dystrophy. In this study, the molecular etiology of 67 patients was proved with the gene panel with a diagnostic yield of 46%. Causal variants were identified in 23 genes including CAPN3(11), DYSF(9), DMD(8), SGCA(5), TTN(4), LAMA2(3), LMNA(3), SGCB(3), COL6A1(3), DES (2), CAV3(2), FKRP(2), FKTN(2), ANO5, COL6A2, CLCN1, GNE, POMGNT1, POMGNT2, POMT2, SYNE1, TCAP, and FLNC with 16 novel variants. There were 27 patients with uncertain molecular results including the ones who had a variant of uncertain significance, who had only one heterozygous variant for an autosomal recessive disease, and the ones who had two variants in different genes. Molecular diagnosis in muscular dystrophy is essential to plan clinical management and choosing treatment options. Also, the results will affect the reproduction options. Targeted next-generation sequencing is a cost-effective method that reduces the WES requirements with a significant diagnostic rate.
Asunto(s)
Distrofia Muscular de Cinturas , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Cinturas/diagnóstico , Mutación , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Pentosiltransferasa/genética , Anoctaminas/genéticaRESUMEN
INTRODUCTION/AIMS: NURTURE (NCT02386553) is an open-label study of nusinersen in children (two SMN2 copies, n = 15; three SMN2 copies, n = 10) who initiated treatment in the presymptomatic stage of spinal muscular atrophy (SMA). A prior analysis after ~3 y showed benefits on survival, respiratory outcomes, motor milestone achievement, and a favorable safety profile. An additional 2 y of follow-up (data cut: February 15, 2021) are reported. METHODS: The primary endpoint is time to death or respiratory intervention (≥6 h/day continuously for ≥7 days or tracheostomy). Secondary outcomes include overall survival, motor function, and safety. RESULTS: Median age of children was 4.9 (3.8-5.5) y at last visit. No children have discontinued the study or treatment. All were alive. No additional children utilized respiratory intervention (defined per primary endpoint) since the prior data cut. Children with three SMN2 copies achieved all World Health Organization (WHO) motor milestones, with all but one milestone in one child within normal developmental timeframes. All 15 children with two SMN2 copies achieved sitting without support, 14/15 walking with assistance, and 13/15 walking alone. Mean Hammersmith Functional Motor Scale Expanded total scores showed continued improvement. Subgroups with two SMN2 copies, minimum baseline compound muscle action potential amplitude ≥2 mV, and no baseline areflexia had better motor and nonmotor outcomes versus all children with two SMN2 copies. DISCUSSION: These results demonstrate the value of early treatment, durability of treatment effect, and favorable safety profile after ~5 y of nusinersen treatment. Inclusion/exclusion criteria and baseline characteristics should be considered when interpreting presymptomatic SMA trial data.
Asunto(s)
Atrofia Muscular Espinal , Atrofias Musculares Espinales de la Infancia , Niño , Humanos , Atrofia Muscular Espinal/tratamiento farmacológico , Oligonucleótidos/uso terapéutico , Caminata , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológicoRESUMEN
Guillain-Barré syndrome (GBS) is an acute polyradiculoneuropathy. Symptoms may vary greatly in presentation and severity. Besides weakness and sensory disturbances, patients may have cranial nerve involvement, respiratory insufficiency, autonomic dysfunction and pain. To develop an evidence-based guideline for the diagnosis and treatment of GBS, using Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology a Task Force (TF) of the European Academy of Neurology (EAN) and the Peripheral Nerve Society (PNS) constructed 14 Population/Intervention/Comparison/Outcome questions (PICOs) covering diagnosis, treatment and prognosis of GBS, which guided the literature search. Data were extracted and summarised in GRADE Summaries of Findings (for treatment PICOs) or Evidence Tables (for diagnostic and prognostic PICOs). Statements were prepared according to GRADE Evidence-to-Decision (EtD) frameworks. For the six intervention PICOs, evidence-based recommendations are made. For other PICOs, good practice points (GPPs) are formulated. For diagnosis, the principal GPPs are: GBS is more likely if there is a history of recent diarrhoea or respiratory infection; CSF examination is valuable, particularly when the diagnosis is less certain; electrodiagnostic testing is advised to support the diagnosis; testing for anti-ganglioside antibodies is of limited clinical value in most patients with typical motor-sensory GBS, but anti-GQ1b antibody testing should be considered when Miller Fisher syndrome (MFS) is suspected; nodal-paranodal antibodies should be tested when autoimmune nodopathy is suspected; MRI or ultrasound imaging should be considered in atypical cases; and changing the diagnosis to acute-onset chronic inflammatory demyelinating polyradiculoneuropathy (A-CIDP) should be considered if progression continues after 8 weeks from onset, which occurs in around 5% of patients initially diagnosed with GBS. For treatment, the TF recommends intravenous immunoglobulin (IVIg) 0.4 g/kg for 5 days, in patients within 2 weeks (GPP also within 2-4 weeks) after onset of weakness if unable to walk unaided, or a course of plasma exchange (PE) 12-15 L in four to five exchanges over 1-2 weeks, in patients within 4 weeks after onset of weakness if unable to walk unaided. The TF recommends against a second IVIg course in GBS patients with a poor prognosis; recommends against using oral corticosteroids, and weakly recommends against using IV corticosteroids; does not recommend PE followed immediately by IVIg; weakly recommends gabapentinoids, tricyclic antidepressants or carbamazepine for treatment of pain; does not recommend a specific treatment for fatigue. To estimate the prognosis of individual patients, the TF advises using the modified Erasmus GBS outcome score (mEGOS) to assess outcome, and the modified Erasmus GBS Respiratory Insufficiency Score (mEGRIS) to assess the risk of requiring artificial ventilation. Based on the PICOs, available literature and additional discussions, we provide flow charts to assist making clinical decisions on diagnosis, treatment and the need for intensive care unit admission.
Asunto(s)
Síndrome de Guillain-Barré , Insuficiencia Respiratoria , Humanos , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/terapia , Inmunoglobulinas Intravenosas/uso terapéutico , Nervios Periféricos , Dolor/tratamiento farmacológico , CorticoesteroidesRESUMEN
Guillain-Barré syndrome (GBS) is an acute polyradiculoneuropathy. Symptoms may vary greatly in presentation and severity. Besides weakness and sensory disturbances, patients may have cranial nerve involvement, respiratory insufficiency, autonomic dysfunction and pain. To develop an evidence-based guideline for the diagnosis and treatment of GBS, using Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology, a Task Force (TF) of the European Academy of Neurology (EAN) and the Peripheral Nerve Society (PNS) constructed 14 Population/Intervention/Comparison/Outcome questions (PICOs) covering diagnosis, treatment and prognosis of GBS, which guided the literature search. Data were extracted and summarised in GRADE Summaries of Findings (for treatment PICOs) or Evidence Tables (for diagnostic and prognostic PICOs). Statements were prepared according to GRADE Evidence-to-Decision (EtD) frameworks. For the six intervention PICOs, evidence-based recommendations are made. For other PICOs, good practice points (GPPs) are formulated. For diagnosis, the principal GPPs are: GBS is more likely if there is a history of recent diarrhoea or respiratory infection; CSF examination is valuable, particularly when the diagnosis is less certain; electrodiagnostic testing is advised to support the diagnosis; testing for anti-ganglioside antibodies is of limited clinical value in most patients with typical motor-sensory GBS, but anti-GQ1b antibody testing should be considered when Miller Fisher syndrome (MFS) is suspected; nodal-paranodal antibodies should be tested when autoimmune nodopathy is suspected; MRI or ultrasound imaging should be considered in atypical cases; and changing the diagnosis to acute-onset chronic inflammatory demyelinating polyradiculoneuropathy (A-CIDP) should be considered if progression continues after 8 weeks from onset, which occurs in around 5% of patients initially diagnosed with GBS. For treatment, the TF recommends intravenous immunoglobulin (IVIg) 0.4 g/kg for 5 days, in patients within 2 weeks (GPP also within 2-4 weeks) after onset of weakness if unable to walk unaided, or a course of plasma exchange (PE) 12-15 L in four to five exchanges over 1-2 weeks, in patients within 4 weeks after onset of weakness if unable to walk unaided. The TF recommends against a second IVIg course in GBS patients with a poor prognosis; recommends against using oral corticosteroids, and weakly recommends against using IV corticosteroids; does not recommend PE followed immediately by IVIg; weakly recommends gabapentinoids, tricyclic antidepressants or carbamazepine for treatment of pain; does not recommend a specific treatment for fatigue. To estimate the prognosis of individual patients, the TF advises using the modified Erasmus GBS outcome score (mEGOS) to assess outcome, and the modified Erasmus GBS Respiratory Insufficiency Score (mEGRIS) to assess the risk of requiring artificial ventilation. Based on the PICOs, available literature and additional discussions, we provide flow charts to assist making clinical decisions on diagnosis, treatment and the need for intensive care unit admission.
Asunto(s)
Síndrome de Guillain-Barré , Insuficiencia Respiratoria , Humanos , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/terapia , Inmunoglobulinas Intravenosas/uso terapéutico , Nervios Periféricos , Dolor , Insuficiencia Respiratoria/tratamiento farmacológico , CorticoesteroidesRESUMEN
BACKGROUND: Biallelic pathogenic variants in FXR1 have recently been associated with two congenital myopathy phenotypes: a severe form associated with hypotonia, long bone fractures, respiratory insufficiency and infantile death, and a milder form characterised by proximal muscle weakness with survival into adulthood. OBJECTIVE: We report eight patients from four unrelated families with biallelic pathogenic variants in exon 15 of FXR1. METHODS: Whole exome sequencing was used to detect variants in FXR1. RESULTS: Common clinical features were noted for all patients, which included proximal myopathy, normal serum creatine kinase levels and diffuse muscle atrophy with relative preservation of the quadriceps femoris muscle on muscle imaging. Additionally, some patients with FXR1-related myopathy had respiratory involvement and required bilevel positive airway pressure support. Muscle biopsy showed multi-minicores and type I fibre predominance with internalised nuclei. CONCLUSION: FXR1-related congenital myopathy is an emerging entity that is clinically recognisable. Phenotypic variability associated with variants in FXR1 can result from differences in variant location and type and is also observed between patients homozygous for the same variant, rendering specific genotype-phenotype correlations difficult. Our work broadens the phenotypic spectrum of FXR1-related congenital myopathy.
Asunto(s)
Enfermedades Musculares , Humanos , Linaje , Mutación , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Homocigoto , Creatina Quinasa/genética , Proteínas de Unión al ARN/genéticaRESUMEN
INTRODUCTION/AIMS: Spinal muscular atrophy (SMA) is an inherited neuromuscular disease caused by survival motor neuron (SMN) protein deficiency. Insulin-like growth factor-I (IGF-I) is a myotrophic and neurotrophic factor that has been reported to be dysregulated in in vivo SMA model systems. However, detailed analyses of the IGF-I system in SMA patients are missing. In this study, we analyzed the components of the IGF-I system in serum and archived skeletal muscle biopsies of SMA patients. METHODS: Serum IGF-I, IGF binding protein (IGFBP)-3, and IGFBP-5 levels were analyzed in 11 SMA patients and 13 healthy children by immunoradiometric and enzyme-linked immunosorbent assays. The expression of IGF-I, IGF-I receptor, and IGFBP-5 proteins was investigated by immunofluorescence analysis in the archived skeletal muscle biopsies of nine SMA patients, six patients with non-SMA-related neuromuscular disease and atrophic fibers in muscle biopsy, and four controls. RESULTS: A significant decrease in IGF-I levels (mean ± SD: -1.39 ± 1.46 vs. 0.017 ± 0.83, p = .02) and increase in IGFBP-5 levels (mean ± SD: 2358.5 ± 1617.4 ng/mL vs. 1003.4 ± 274.3 ng/mL, p = .03) were detected in serum samples of SMA patients compared to healthy controls. Increased expression of IGF-I, IGF-I receptor, and IGFBP-5 was detected in skeletal muscle biopsies of SMA patients and non-SMA neuromuscular diseases, indicating atrophy-specific alterations in the pathway. DISCUSSION: Our findings suggested that the components of the IGF-I system are altered in SMA patients at both the systemic and tissue-specific levels.
Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Atrofia Muscular Espinal , Niño , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Receptor IGF Tipo 1 , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina , Atrofia Muscular Espinal/patología , Factores de Crecimiento Nervioso/metabolismoRESUMEN
OBJECTIVE: To explore the effects of aerobic training adding to home-based exercise program on motor function and muscle architectural properties in children with Duchenne muscular dystrophy. DESIGN: This is a prospective randomized controlled study. SETTING: Pediatric neuromuscular clinic in a tertiary care center. SUBJECTS: Children with Duchenne muscular dystrophy. INTERVENTIONS: Children were randomly divided into two groups whereby 12-weeks aerobic training was additionally given in treatment group in contrast to the control group which received only home-based exercise program. MAIN MEASURES: Motor Function Measure and Six Minute Walk Test were used for clinical evaluation, and muscle architectural properties (thickness, pennation angle and fascicle length) were measured by ultrasound imaging. Both groups were assessed at baseline and after 12-weeks of training. RESULTS: Median age of children was 7.9 years in the treatment group and 8.6 years in the control group (p > 0.05). Significant improvements were obtained for Motor Function Measure and Six Minute Walk Test from baseline to 12-weeks in the treatment group; Motor Function Measure total score changed from 83.2 (6.1) to 86.9 (4.0) vs. 82.3 (10.2) to 80.4 (9.4) points in the control group (p = 0.006); 6 Minute Walk Test distance changed from 395.3 (46.6) to 413.0 (52.3) vs. 421.7 (64.4) to 393.8 (68.2) meters in the control group (p < 0.001). However, muscle architectural parameters did not change during study period (p > 0.05). CONCLUSION: Aerobic training may be of additional value in improving motor function and performance with no remarkable effect on muscle architectural properties.
Asunto(s)
Distrofia Muscular de Duchenne , Niño , Terapia por Ejercicio , Humanos , Músculos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Estudios Prospectivos , Prueba de PasoRESUMEN
Secondary mitochondrial damage in skeletal muscles is a common feature of different neuromuscular disorders, which fall outside the mitochondrial cytopathies. The common cause of mitochondrial dysfunction and structural changes in skeletal muscle tissue remains to be discovered. Although they are associated with different clinical, genetic, and pathologic backgrounds, the pathomechanisms underlying neuromuscular disorders might be attributed to the complex interaction and cross talk between mitochondria and the associated miRNAs. This study aimed to identify the common miRNA signatures that are associated with mitochondrial damage in different muscular dystrophies (MDs; Duchenne muscular dystrophy, megaconial congenital muscular dystrophy, Ullrich congenital muscular dystrophy, and α-dystroglycanopathy). The miRNome profiles of skeletal muscle biopsies acquired from four different MD groups and control individuals were analyzed by miRNA microarray. We identified 17 common up-regulated miRNAs in all of the tested MD groups. A specific bioinformatics approach identified 10 of these miRNAs to be specifically related to the mitochondrial pathways. Six miRNAs, miR-134-5p, miR-199a-5p, miR-382-5p, miR-409-3p, miR-497-5p, and miR-708-5p, were associated with the top four mitochondrial pathways and were thus selected as priority candidates for further validation by quantitative real-time PCR analysis. We demonstrate, for the first time, common up-regulated miRNAs that are associated with mitochondrial damage in different MD groups, therefore contributing to the pathophysiology. Our findings may open a new gate toward therapeutics.
Asunto(s)
Mitocondrias/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofia Muscular de Duchenne/genética , Esclerosis/genética , Adolescente , Niño , Preescolar , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Lactante , Masculino , MicroARNs/genéticaRESUMEN
Autosomal-recessive mutations in the Alsin Rho guanine nucleotide exchange factor (ALS2) gene may cause specific subtypes of childhood-onset progressive neurodegenerative motor neuron diseases (MND). These diseases can manifest with a clinical continuum from infantile ascending hereditary spastic paraplegia (IAHSP) to juvenile-onset forms with or without lower motor neuron involvement, the juvenile primary lateral sclerosis (JPLS) and the juvenile amyotrophic lateral sclerosis (JALS). We report 11 patients from seven unrelated Turkish and Yemeni families with clinical signs of IAHSP or JPLS. We performed haplotype analysis or next-generation panel sequencing followed by Sanger Sequencing to unravel the genetic disease cause. We described their clinical phenotype and analyzed the pathogenicity of the detected variants with bioinformatics tools. We further reviewed all previously reported cases with ALS2-related MND. We identified five novel homozygous pathogenic variants in ALS2 at various positions: c.275_276delAT (p.Tyr92CysfsTer11), c.1044C>G (p.Tyr348Ter), c.1718C>A (p.Ala573Glu), c.3161T>C (p.Leu1054Pro), and c.1471+1G>A (NM_020919.3, NP_065970.2). In our cohort, disease onset was in infancy or early childhood with rapid onset of motor neuron signs. Muscle weakness, spasticity, severe dysarthria, dysphagia, and facial weakness were common features in the first decade of life. Frameshift and nonsense mutations clustered in the N-terminal Alsin domains are most prevalent. We enriched the mutational spectrum of ALS2-related disorders with five novel pathogenic variants. Our study indicates a high detection rate of ALS2 mutations in patients with a clinically well-characterized early onset MND. Intrafamilial and even interfamilial diversity in patients with identical pathogenic variants suggest yet unknown modifiers for phenotypic expression.
Asunto(s)
Predisposición Genética a la Enfermedad , Factores de Intercambio de Guanina Nucleótido/genética , Enfermedad de la Neurona Motora/genética , Adolescente , Adulto , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Niño , Preescolar , Codón sin Sentido/genética , Femenino , Mutación del Sistema de Lectura/genética , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Enfermedad de la Neurona Motora/clasificación , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología , Adulto JovenRESUMEN
OBJECTIVE: To revise the 2010 consensus guideline on chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). METHODS: Seventeen disease experts, a patient representative, and two Cochrane methodologists constructed 12 Population/Intervention/Comparison/Outcome (PICO) questions regarding diagnosis and treatment to guide the literature search. Data were extracted and summarized in GRADE summary of findings (for treatment PICOs) or evidence tables (for diagnostic PICOs). RESULTS: Statements were prepared according to the GRADE Evidence-to-Decision frameworks. Typical CIDP and CIDP variants were distinguished. The previous term "atypical CIDP" was replaced by "CIDP variants" because these are well characterized entities (multifocal, focal, distal, motor, or sensory CIDP). The levels of diagnostic certainty were reduced from three (definite, probable, possible CIDP) to only two (CIDP and possible CIDP), because the diagnostic accuracy of criteria for probable and definite CIDP did not significantly differ. Good Practice Points were formulated for supportive criteria and investigations to be considered to diagnose CIDP. The principal treatment recommendations were: (a) intravenous immunoglobulin (IVIg) or corticosteroids are strongly recommended as initial treatment in typical CIDP and CIDP variants; (b) plasma exchange is strongly recommended if IVIg and corticosteroids are ineffective; (c) IVIg should be considered as first-line treatment in motor CIDP (Good Practice Point); (d) for maintenance treatment, IVIg, subcutaneous immunoglobulin or corticosteroids are recommended; (e) if the maintenance dose of any of these is high, consider either combination treatments or adding an immunosuppressant or immunomodulatory drug (Good Practice Point); and (f) if pain is present, consider drugs against neuropathic pain and multidisciplinary management (Good Practice Point).
Asunto(s)
Neurología , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Nervios Periféricos , Intercambio Plasmático , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/diagnóstico , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/terapiaRESUMEN
To revise the 2010 consensus guideline on chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Seventeen disease experts, a patient representative, and two Cochrane methodologists constructed 12 Population/Intervention/Comparison/Outcome (PICO) questions regarding diagnosis and treatment to guide the literature search. Data were extracted and summarized in GRADE summary of findings (for treatment PICOs) or evidence tables (for diagnostic PICOs). Statements were prepared according to the GRADE Evidence-to-Decision frameworks. Typical CIDP and CIDP variants were distinguished. The previous term "atypical CIDP" was replaced by "CIDP variants" because these are well characterized entities (multifocal, focal, distal, motor, or sensory CIDP). The levels of diagnostic certainty were reduced from three (definite, probable, possible CIDP) to only two (CIDP and possible CIDP), because the diagnostic accuracy of criteria for probable and definite CIDP did not significantly differ. Good Practice Points were formulated for supportive criteria and investigations to be considered to diagnose CIDP. The principal treatment recommendations were: (a) intravenous immunoglobulin (IVIg) or corticosteroids are strongly recommended as initial treatment in typical CIDP and CIDP variants; (b) plasma exchange is strongly recommended if IVIg and corticosteroids are ineffective; (c) IVIg should be considered as first-line treatment in motor CIDP (Good Practice Point); (d) for maintenance treatment, IVIg, subcutaneous immunoglobulin or corticosteroids are recommended; (e) if the maintenance dose of any of these is high, consider either combination treatments or adding an immunosuppressant or immunomodulatory drug (Good Practice Point); and (f) if pain is present, consider drugs against neuropathic pain and multidisciplinary management (Good Practice Point).
Asunto(s)
Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Corticoesteroides , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Neurología , Nervios Periféricos , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/diagnóstico , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/terapiaRESUMEN
Juvenile dermatomyositis (JDM) is an inflammatory myopathy which causes severe morbidity and high mortality if untreated. In this study, we aimed to define the T-helper cell profile in the muscle biopsies of JDM patients. Muscle biopsies of twenty-six patients (50% female) were included in the study. Immunohistochemical expression of CD3, CD20, CD138, CD68, IL-17, Foxp3, IFN-É£, IFN-alpha and IL-4 was studied and muscle biopsies were scored using the JDM muscle biopsy scoring tool. Inflammatory cells were in small clusters in perimysium and perivascular area or scattered throughout the endomysium in most biopsies; however in 2 biopsies, lymphoid follicle-like big clusters were observed, and in one, there was a very dense and diffuse inflammatory infiltration nearly destroying all the muscle architecture. Seventy-three per cent of the biopsies had T cells, 88% had B cells, 57% had plasma cells, and all had macrophages. As for T-helper cell subtypes, 80% of the biopsies were Th1 positive, 92% Th17 positive and 30% Treg positive. No IL-4 positive inflammatory cell was detected, and only 2 biopsies showed IFN-alpha positivity. The mean JDM biopsy score was 17.6, meaning moderate to severe muscular involvement. Visual analogue score of the pathologist was strongly correlated with histopathological features. B cells, macrophages, plasma cells and T cells constitute the inflammatory milieu of the JDM muscle biopsies. As for T cells, JDM is a disease mainly related with Th1 and Th17 T-helper cell subtypes and to some extend Treg. Th2 cells are not involved in the pathogenesis.
Asunto(s)
Dermatomiositis/inmunología , Músculo Cuádriceps/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Adolescente , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Biopsia , Niño , Preescolar , Dermatomiositis/patología , Femenino , Humanos , Lactante , Masculino , Músculo Cuádriceps/patología , Estudios Retrospectivos , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Colaboradores-Inductores/patologíaRESUMEN
BACKGROUND: Spinal muscular atrophy is an autosomal recessive neuromuscular disorder that is caused by an insufficient level of survival motor neuron (SMN) protein. Nusinersen is an antisense oligonucleotide drug that modifies pre-messenger RNA splicing of the SMN2 gene and thus promotes increased production of full-length SMN protein. METHODS: We conducted a randomized, double-blind, sham-controlled, phase 3 efficacy and safety trial of nusinersen in infants with spinal muscular atrophy. The primary end points were a motor-milestone response (defined according to results on the Hammersmith Infant Neurological Examination) and event-free survival (time to death or the use of permanent assisted ventilation). Secondary end points included overall survival and subgroup analyses of event-free survival according to disease duration at screening. Only the first primary end point was tested in a prespecified interim analysis. To control the overall type I error rate at 0.05, a hierarchical testing strategy was used for the second primary end point and the secondary end points in the final analysis. RESULTS: In the interim analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (21 of 51 infants [41%] vs. 0 of 27 [0%], P<0.001), and this result prompted early termination of the trial. In the final analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (37 of 73 infants [51%] vs. 0 of 37 [0%]), and the likelihood of event-free survival was higher in the nusinersen group than in the control group (hazard ratio for death or the use of permanent assisted ventilation, 0.53; P=0.005). The likelihood of overall survival was higher in the nusinersen group than in the control group (hazard ratio for death, 0.37; P=0.004), and infants with a shorter disease duration at screening were more likely than those with a longer disease duration to benefit from nusinersen. The incidence and severity of adverse events were similar in the two groups. CONCLUSIONS: Among infants with spinal muscular atrophy, those who received nusinersen were more likely to be alive and have improvements in motor function than those in the control group. Early treatment may be necessary to maximize the benefit of the drug. (Funded by Biogen and Ionis Pharmaceuticals; ENDEAR ClinicalTrials.gov number, NCT02193074 .).
Asunto(s)
Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos/uso terapéutico , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Edad de Inicio , Supervivencia sin Enfermedad , Método Doble Ciego , Femenino , Humanos , Lactante , Inyecciones Espinales , Masculino , Destreza Motora , Oligonucleótidos/efectos adversos , Oligonucleótidos Antisentido/efectos adversos , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Respiración Artificial , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/mortalidad , Atrofias Musculares Espinales de la Infancia/fisiopatología , Análisis de Supervivencia , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismoRESUMEN
PURPOSE: Fetal akinesia has multiple clinical subtypes with over 160 gene associations, but the genetic etiology is not yet completely understood. METHODS: In this study, 51 patients from 47 unrelated families were analyzed using next-generation sequencing (NGS) techniques aiming to decipher the genomic landscape of fetal akinesia (FA). RESULTS: We have identified likely pathogenic gene variants in 37 cases and report 41 novel variants. Additionally, we report putative pathogenic variants in eight cases including nine novel variants. Our work identified 14 novel disease-gene associations for fetal akinesia: ADSSL1, ASAH1, ASPM, ATP2B3, EARS2, FBLN1, PRG4, PRICKLE1, ROR2, SETBP1, SCN5A, SCN8A, and ZEB2. Furthermore, a sibling pair harbored a homozygous copy-number variant in TNNT1, an ultrarare congenital myopathy gene that has been linked to arthrogryposis via Gene Ontology analysis. CONCLUSION: Our analysis indicates that genetic defects leading to primary skeletal muscle diseases might have been underdiagnosed, especially pathogenic variants in RYR1. We discuss three novel putative fetal akinesia genes: GCN1, IQSEC3 and RYR3. Of those, IQSEC3, and RYR3 had been proposed as neuromuscular disease-associated genes recently, and our findings endorse them as FA candidate genes. By combining NGS with deep clinical phenotyping, we achieved a 73% success rate of solved cases.
Asunto(s)
Enfermedades Fetales/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas de Unión al ARN/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Transactivadores/genética , Adolescente , Adulto , Artrogriposis/genética , Artrogriposis/patología , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Femenino , Enfermedades Fetales/patología , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Adulto JovenRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
This study establishes PYROXD1 variants as a cause of early-onset myopathy and uses biospecimens and cell lines, yeast, and zebrafish models to elucidate the fundamental role of PYROXD1 in skeletal muscle. Exome sequencing identified recessive variants in PYROXD1 in nine probands from five families. Affected individuals presented in infancy or childhood with slowly progressive proximal and distal weakness, facial weakness, nasal speech, swallowing difficulties, and normal to moderately elevated creatine kinase. Distinctive histopathology showed abundant internalized nuclei, myofibrillar disorganization, desmin-positive inclusions, and thickened Z-bands. PYROXD1 is a nuclear-cytoplasmic pyridine nucleotide-disulphide reductase (PNDR). PNDRs are flavoproteins (FAD-binding) and catalyze pyridine-nucleotide-dependent (NAD/NADH) reduction of thiol residues in other proteins. Complementation experiments in yeast lacking glutathione reductase glr1 show that human PYROXD1 has reductase activity that is strongly impaired by the disease-associated missense mutations. Immunolocalization studies in human muscle and zebrafish myofibers demonstrate that PYROXD1 localizes to the nucleus and to striated sarcomeric compartments. Zebrafish with ryroxD1 knock-down recapitulate features of PYROXD1 myopathy with sarcomeric disorganization, myofibrillar aggregates, and marked swimming defect. We characterize variants in the oxidoreductase PYROXD1 as a cause of early-onset myopathy with distinctive histopathology and introduce altered redox regulation as a primary cause of congenital muscle disease.
Asunto(s)
Núcleo Celular/genética , Miopatías Distales/genética , Variación Genética , Miopatías Estructurales Congénitas/genética , Oxidorreductasas/genética , Secuencia de Aminoácidos , Animales , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Estudios de Cohortes , Creatina Quinasa/genética , Creatina Quinasa/metabolismo , Citoplasma/metabolismo , Miopatías Distales/patología , Proteína 4 Similar a ELAV/genética , Proteína 4 Similar a ELAV/metabolismo , Femenino , Flavoproteínas/metabolismo , Eliminación de Gen , Estudio de Asociación del Genoma Completo , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Células HEK293 , Humanos , Masculino , Músculo Esquelético/patología , Mutación Missense , Miopatías Estructurales Congénitas/patología , Oxidorreductasas/metabolismo , Linaje , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Pez Cebra/genéticaRESUMEN
Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.
Asunto(s)
Mutación del Sistema de Lectura/genética , Enfermedades Mitocondriales/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Nucleotidiltransferasas/genética , Riboflavina/farmacología , Complejo Vitamínico B/farmacología , Adulto , Western Blotting , Estudios de Casos y Controles , Células Cultivadas , Transporte de Electrón , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Flavina-Adenina Dinucleótido/metabolismo , Perfilación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/patología , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/tratamiento farmacológico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutagénesis Sitio-Dirigida , Unión Proteica , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adulto JovenRESUMEN
Up to 15% of Duchenne's muscular dystrophy (DMD) is caused by nonsense mutations (nm-DMD). In this study, we aimed to evaluate the age at diagnosis, presentations, and diagnostic approach in 43 nm-DMD boys. The mean age at presentation and diagnosis was 3 years and 4 years, respectively. Presenting signs or symptoms were asymptomatic creatine kinase (CK) elevation (40%), muscle weakness (30%), motor delay (18%), and walking difficulties (12%). Multiplex polymerase chain reaction (PCR) of the most commonly deleted exons were negative (n = 17), and muscle biopsy was consistent with dystrophinopathy (n = 24). In all patients, multiplex ligation-dependent probe amplification (MLPA) followed by direct sequencing of all exons, revealed nm-DMD. Mean age at genetic diagnosis was 6 years 8 months. Patients were evaluated in two-time periods, between 2006 and 2011 (Group I: n = 10) and 2011 and 2017 (Group II: n = 33). The mean age at diagnosis/genetic confirmation in Group I and in Group II was 3 years 9 months/10 years, and 4 years 1 month/5 years 9 months, respectively. Most frequently performed first step diagnostic tests in Group I and Group II were muscle biopsy and MLPA.Our study reflects the change in the age at genetic diagnosis and diagnostic approach to nm-DMD depending on the advances and availability of genetic testing.